(Established by Govt. of A.P., Act. No. 30 of 2008) ANANTHAPURAMU – 515 002 (A.P.) INDIA.

Course Structure for B.Tech-R15 Regulations

Electronics & Communication Engineering

I B.Tech. - I Semester

S.N	Course	Subject	L	Т	Р	С
0	code			•	•	ŭ
1.	15A52101	Functional English	3	1	-	3
2.	15A54101	Mathematics – I	3	1	-	3
3.	15A05101	Computer Programming	3	1	-	3
4.	15A51101	Engineering Chemistry	3	1	-	3
5.	15A01101	Environmental Studies	3	1	-	3
6.	15A52102	English Language Communication Skills	-	-	4	2
		Lab				
7.	15A51102	Engineering Chemistry Lab	-	-	4	2
8.	15A05102	Computer Programming Lab	-	-	4	2
		Total	15	5	12	21

I-II Semester

S.N	Course	Subject	L	т	Р	Drg	C
0	code	Gubjeet	_	I	Р	Dig	
1.	15A52201	English for Professional Communication	3	1	-	-	3
2.	15A54201	Mathematics – II	3	1	-	-	3
3.	15A04201	Network Analysis	3	1	-	-	3
4.	15A56101	Engineering Physics	3	1	-	-	3
5.	15A03101	Engineering Drawing	0	-	-	6	3
6.	15A04202	Network Analysis Lab	-	-	4	-	2
7.	15A56102	Engineering Physics Lab	-	-	4	-	2
8.	15A99201	Engineering and IT Workshop	-	-	4	-	2
		Total	12	4	12	6	21

^{*} L - Lecture hours

^{*}T - Tutorial hours

^{*}P - Practical hours

^{*}Drg - Drawing

^{*}C - Credits

II B. Tech - I sem

S.	Course	Subject	L	T	Р	С
No	Code					
1	15A54301	Mathematics-III	3	1	-	3
2	15A04301	Electronic Devices and Circuits	3	1	-	3
3	15A04302	Switching Theory and Logic Design	3	1	-	3
4	15A04303	Signals and Systems	3	1	-	3
5	15A04304	Probability Theory and Stochastic	3	1	-	3
		Processes				
6	15A02306	Electrical Technology	3	1	-	3
7	15A04305	Electronic Devices and Circuits Laboratory	-	-	4	2
8	15A02307	Electrical Technology and Basic	-	-	4	2
		Simulation Laboratory				
		Total	18	06	80	22

II B. Tech - II sem

S.	Course	Subject	L	Τ	Р	С
No	Code	-				
1	15A54402	Mathematics-IV	3	1	-	3
2	15A04401	Electronic Circuit Analysis	3	1	-	3
3	15A04402	Analog Communication Systems	3	1	-	3
4	15A04403	Electromagnetic Theory and Transmission	3	1	-	3
		Lines				
5	15A05201	Data Structures	3	1	-	3
6	15A02303	Control Systems Engineering	3	1	-	3
7	15A04404	Electronic Circuit Analysis Laboratory	-	-	4	2
8	15A04405	Analog Communication Systems	-	-	4	2
		Laboratory				
9	15A04406	Comprehensive Online Examination-I	-	-	-	1
		Total	18	06	08	23

B.Tech III-I Semester (ECE)

S.	Course	Subject	L	T	Р	С
No.	Code					
1.	15A04511	Computer Organization	3	1	-	3
2.	15A04501	Antennas and Wave Propagation	3	1	-	3
3.	15A04502	Digital Communication Systems	3	1	-	3
4.	15A04503	Linear Integrated Circuits and Applications	3	1	-	3
5.	15A04504	Digital System Design	3	1	-	3
6.		MOOCS-I	3	1	-	3
	15A04505	a. Linux Programming & Scripting				
	15A04506	b. MEMS & Microsystems				
7.	15A04507	IC Applications Laboratory			4	2
8.	15A04508	Digital Communication Systems Laboratory			4	2
9.	15A99501	Audit course - Social Values & Ethics	2	0	2	0
	•	Total	20	06	10	22

B.Tech III-II Semester(ECE)

S.	Course	Subject	L	Т	Р	С
No.	Code					
1.	15A52301	Managerial Economics and Financial	3	1	-	3
		Analysis				
2.	15A04601	Microprocessors & Microcontrollers	3	1	-	3
3.	15A04602	Electronic Measurements and	3	1	-	3
		Instrumentation				
4.	15A04603	Digital Signal Processing	3	1	-	3
5.	15A04604	VLSI Design	3	1	-	3
6.		CBCC-I	3	1	-	3
	15A04605	a. MATLAB Programming				
	15A04606	b. Industrial Electronics				
	15A02605	c. Neural Networks & Fuzzy Logic				
	15A01608	d. Intellectual Property Rights				
7.	15A04607	Microprocessors & Microcontrollers	-	-	4	2
		Laboratory				
8.	15A04608	Digital Signal Processing Laboratory	-	-	4	2
9.	15A52602	Advanced English Language Communication	-	-	2	-
		(AELCS) Laboratory (Audit Course)				
10.	15A04609	Comprehensive Online Examination-II	-	-	-	1
		Total	18	06	12	23

B.Tech IV-I Semester(ECE)

S.	Course	Subject	L	Τ	Р	С
No.	Code	-				
1.	15A04701	Optical Fiber Communication	3	1	-	3
2.	15A04702	Embedded Systems	3	1	-	3
3.	15A04703	Microwave Engineering	3	1	-	3
4.	15A04704	Data Communications and Networking	3	1	-	3
5.		CBCC-II	3	1	-	3
	15A04705	a. Radar Systems				
	15A04706	b. Adaptive Signal Processing				
	15A04707	c. FPGA Design				
6.		CBCC-III	3	1	-	3
	15A04708	a. Digital Image Processing				
	15A04709	b. Cellular & Mobile Communication				
	15A04710	c. Real Time Systems				
7.	15A04711	Microwave and Optical Communication	-	-	4	2
		Laboratory				
8.	15A04712	VLSI & Embedded Systems Laboratory	-	-	4	2
	<u>'</u>	Total	18	06	08	22

B.Tech IV-II Semester(ECE)

S.	Course	Subject	L	Т	Р	С
No.	Code					
1.		MOOCS-II*	3	1	-	3
	15A04801	a. Advanced Digital Signal Processing-				
	15A04802	Multirate & Wavlet				
		b. Low Power VLSI Circuits & Systems				
2.		MOOCS-III *	3	1	-	3
	15A04803	a. Pattern Recognition & Applications				
	15A04804	b. RF Integrated Circuits				
3.	15A04805	Comprehensive Viva Voce	ı	-	4	2
4.	15A04806	Technical Seminar	-	-	4	2
5.	15A04807	Project Work	-	-	24	12
	•	Total	6	02	32	22

Minor Discipline in ECE

S. No.	Course Code	Subject	L	T	P	С
1	15A04303	Signals & Systems	3	1	-	3
2	15A04304	Probability Theory & Stochastic Processes	3	1	-	3
3	15A04402	Analog Communication Systems	3	1	-	3
4	15A04502	Digital Communication Systems	3	1	-	3
5	15M04101	Minor Discipline Project	-	-	-	8
		Total	12	4	-	20

B. Tech I-I Sem. (ECE)

LTPC

(15A52101) FUNCTIONAL ENGLISH

(Common to All Branches)

Preamble:

English is an international language as well as a living and vibrant one. People have found that knowledge of English is a passport for better career, better pay, and advanced knowledge and for communication with the entire world. As it is a language of opportunities in this global age, English is bound to expand its domain of use everywhere. The syllabus has been designed to enhance communication skills of the students of engineering and pharmacy. The prescribed book serves the purpose of preparing them for everyday communication and to face the global competitions in future.

The text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and learner-centered. They should be encouraged to participate in the classroom activities keenly.

In addition to the exercises from the text done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

Objectives:

- To enable the students to communicate in English for academic and social purpose.
- To enable the students to acquire structure and written expressions required for their profession.
- To develop the listening skills of the students.
- To inculcate the habit of reading and critical thinking skills.
- To enhance the study skills of the students with emphasis on LSRW skills.

UNIT-I

Topics: Paragraph writing, writing letters, role play, reading graphs, prepositions, designing posters, tenses, making recommendations.

Text: ENVIRONMENTAL CONSCIOUSNESS' from MINDSCAPES

Climate Change - Green Cover - Pollution

UNIT -II

Topics: Compound nouns, imperatives, writing instructions, interpreting charts and pictures, note making, role play, prefixes, subject-verb agreement.

Text: EMERGING TECHNOLOGIES from MINDSCAPES

Solar Thermal Power - Cloud Computing - Nanotechnology

UNIT -III

Topics: Making conversations, homonyms and homophones, SMS and use of emotions, past participle for irregular verbs, group discussion, E - mail communication, antonyms, Preparing projects

Text: GLOBAL ISSUES from *MINDSCAPES*

Child Labour - Food Crisis - Genetic Modification - E-Waste - Assistive Technology

UNIT-IV

Topics: Group discussion, affixes, double consonants, debates, writing a book / film review, predicting and problem-solving-future tense, adverbs

Text: SPACE TREK from *MINDSCAPES*

Hubble Telescope - Chandrayan-2 - Anusat - Living Quarters - Space Tourism

UNIT -V

Topics: Compare and contrast, effective writing, group discussion, writing reports, writing advertisements, tweeting and blogging, types of interviews, framing questions.

Text: MEDIA MATTERS from *MINDSCAPES*

History of Media - Language and Media - Milestone in Media - Manipulation by Media - Entertainment Media - Interviews

Text Books:

 MINDSCAPES: English for Technologists and Engineers, Orient Blackswan, 2014.

References:

- A Practical Course in Effective English Speaking Skills by J.K.Gangal, PHI Publishers, New Delhi.2012
- Technical Communication, Meenakshi Raman, Oxford University Press, 2011.
- Spoken English, R.K. Bansal & JB Harrison, Orient Longman, 2013, 4Th edition.
- 4. Murphy's English Grammar with CD, Murphy, Cambridge University Press, 3 Rd edition.
- 5. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan, Frank Bros & CO,2008.

Outcomes:

- Have improved communication in listening, speaking, reading and writing skills in general.
- Have developed their oral communication and fluency in group discussions and interviews.
- Have improved awareness of English in science and technology context.
- Have achieved familiarity with a variety of technical reports.

B. Tech I-I Sem. (ECE)

L T P C 3 1 0 3

(15A54101) MATHEMATICS - I

(Common to All Branches)

Objectives:

- To train the students thoroughly in Mathematical concepts of ordinary differential equations and their applications.
- To prepare students for lifelong learning and successful careers using mathematical concepts of differential and Integral calculus, ordinary differential equations and vector calculus.
- To develop the skill pertinent to the practice of the mathematical concepts including the students abilities to formulate and modeling the problems, to think creatively and to synthesize information.

UNIT - I

Exact, linear and Bernoulli equations, Applications to first order equations; Orthogonal trajectories, Simple electric circuits.

Non-homogeneous linear differential equations of second and higher order with constant coefficients with RHS term of the type e^{ax} , sin ax, cos ax, polynomials in x, e^{ax} V(x), xV(x).

UNIT - II

Method of variation of parameters, linear equations with variable coefficients: Euler-Cauchy Equations, Legendre's linear equation. Applications of linear differential equations- Mechanical and Electrical oscillatory circuits and Deflection of Beams.

UNIT - III

Taylor's and Maclaurin's Series - Functions of several variables – Jacobian – Maxima and Minima of functions of two variables, Lagrange's method of undetermined Multipliers with three variables only. Radius of curvature.

UNIT - IV

Multiple integral – Double and triple integrals – Change of Variables – Change of order of integration. Applications to areas and volumes in Cartesian and polar coordinates using double and triple integral.

UNIT - V

Vector Calculus: Gradient – Divergence – Curl and their properties; Vector integration – Line integral - Potential function – Area – Surface and volume integrals. Vector integral theorems: Green's theorem – Stoke's and Gauss's Divergence Theorem (Without proof). Application of Green's, Stoke's and Gauss's Theorems.

Text Books:

- 1. Engineering Mathematics-I, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher
- 2. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.

References:

- 1. Engineering Mathematics Volume-I, by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S.Chand publication.
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.
- 3. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 4. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Outcomes:

- The students become familiar with the application of differential and integral calculus, ordinary differential equations and vector calculus to engineering problems.
- The students attain the abilities to use mathematical knowledge to analyze, formulate and solve problems in engineering applications.

B. Tech I-I Sem. (ECE)

LTPC

(15A05101) COMPUTER PROGRAMMING

(Common to All Branches)

Objectives:

- Understand problem solving techniques
- Understand representation of a solution to a problem
- Understand the syntax and semantics of C programming language
- Understand the significance of Control structures
- Learn the features of C language

UNIT - I

Overview of Computers and Programming - Electronic Computers Then and Now - Computer Hardware - Computer Software - Algorithm - Flowcharts - Software Development Method - Applying the Software Development Method.

Types, Operators and Expressions: Variable Names - Data Types and Sizes - Constants - Declarations - Arithmetic Operators - Relational and Logical Operators - Type Conversions - Increment and Decrement Operators - Bitwise Operators - Assignment Operators and Expressions - Conditional Expressions - Precedence and Order of Evaluation.

UNIT - II

Selections Statements – Iteration Statements – Jump Statements - Expression Statements - Block Statements.

Single Dimensional Arrays – Generating a Pointer to an Array – Passing Single Dimension Arrays to Functions – Strings – Two Dimensional Arrays – Indexing Pointers – Array Initialization – Variable Length Arrays

UNIT - III

Pointer Variables – Pointer Operators - Pointer Expressions – Pointers And Arrays – Multiple Indirection – Initializing Pointers – Pointers to Functions – C's Dynamic Allocation Functions – Problems with Pointers.

Understanding the scope of Functions – Scope Rules – Type Qualifiers – Storage Class Specifiers- Functions Arguments – The Return Statement.

UNIT-IV

Command line arguments – Recursion – Function Prototypes – Declaring Variable Length Parameter Lists

Structures – Arrays of Structures – Passing Structures to Functions – Structure Pointers – Arrays and Structures within Structures – Unions – Bit Fields – Enumerations – typedef

UNIT - V

Reading and Writing Characters – Reading and Writing Strings – Formatted Console I/O – Printf - Scanf – Standard C Vs Unix File I/O – Streams and Files – File System Basics – Fread and Fwrite – Fseek and Random Access I/O – Fprintf () and Fscanf() – The Standard Streams – The Preprocessor Directives #define and #include.

Text Books:

- "The Complete Reference C"- Fourth Edition- Herbert Schildt- McGrawHill Eduction.
- "The C Programming Language" Second Edition- Brain W. Kernighan-Dennis M. Ritchie- Prentice Hall-India. (UNIT- I)

References:

- Programming in C, Second Edition Pradip Dey, Manas Ghosh, Oxford University Press.
- "C From Theory to Practice"- George S. Tselikis- Nikolaos D. Tselikas- CRC Press
- 3. "Programming with C"- R S Bichkar- University Press.
- 4. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson Education. (UNIT-I)
- Computer Fundamentals and C Programming- Second Edition- P.Chenna Reddy- Available at Pothi.com (http://pothi.com/pothi/book/dr-p-chenna-reddy-computer-fundamentals-and-c-programming).

Outcomes:

- Apply problem solving techniques in designing the solutions for a wide-range of problems
- Choose appropriate control structure depending on the problem to be solved
- Modularize the problem and also solution

B. Tech I-I Sem. (ECE)

L T P (

(15A51101) ENGINEERING CHEMISTRY

(Common to ECE/EIE/ME/IT)

Objectives:

- The Engineering Chemistry course for undergraduate students is framed to strengthen the fundamentals of chemistry and then build an interface of theoretical concepts with their industrial/engineering applications.
- The course main aim is to impart in-depth knowledge of the subject and highlight the role of chemistry in the field of engineering.
- The lucid explanation of the topics will help students understand the fundamental concepts and apply them to design engineering materials and solve problems related to them. An attempt has been made to logically correlate the topic with its application.
- The extension of fundamentals of electrochemistry to energy storage devices such as commercial batteries and fuel cells is one such example.
- After the completion of the course, the student would understand the concepts of chemistry and apply to various materials for engineering applications.

UNIT – IWATER QUALITY AND TREATMENT

Impurities in water, Hardness of water and its Units, Disadvantages of hard water, Estimation of hardness by EDTA method, Numerical problems on hardness, Estimation of dissolved oxygen, Alkalinity, acidity and chlorides in water, Water treatment for domestic purpose (Chlorination, Bleaching powder, ozonisation)

Industrial Use of water:

For steam generation, troubles of Boilers: Scale & Sludge, Priming and Foaming, Caustic Embrittlement and Boiler Corrosion.

Treatment of Boiler Feed water:

Internal Treatment: Colloidal, Phosphate, Carbonate, Calgon and sodium aluminate treatment.

External Treatment: Ion-Exchange and Permutit processes.

UNIT – II POLYMERS

i)Introduction: Basic concepts of polymerisation, Types of polymerisation (Chain Growth (Addition), Step growth (Condensation)), Mechanism: cationic, anionic, free radical and coordination covalent.

Plastomers: Thermosetting and Thermoplatics, Preparation, properties and Engineering applications of PVC, Teflon, Bakelite and nylons.

Elastomers

Natural Rubber; Processing of natural rubbers, Compounding of Rubber

Synthetic Rubber: Preparation, properties and engineering applications of Buna-S, Buna-N, Polyurethene, Polysulfide (Thiokol) rubbers

- ii) Conducting polymers: Mechanism, synthesis and applications of polyacetyline, polyaniline.
- iii) Inorganic Polymers: Basic Introduction, Silicones, Polyphospazins (-(R)2-P=N-) applications

UNIT – III ELECTROCHEMISTRY

- i) Galvanic cells, Nernest Equation, Numerical calculations, Batteries: Rechargeable batteries (Lead acid, Ni-Cd, Lithium Ion Batteries), Fuels cells: (Hydrogen-Oxygen and Methanol-Oxygen, Solid oxide)
- ii) Corrosion: Introduction, type of corrosion (Concentration cell corrosion, Galvanic corrosion), Chemical (Dry) and Electrochemical (Wet) Theory of corrosion. Galvanic series, factors affecting the corrosion (Metal and environment). Prevention: Cathodic protection (Sacrificial anode and impressed current), Inhibitors (Anodic and cathodic), electroplating (Copper, nickel and chromium) and electroless plating (Copper and nickel)

UNIT – IV FUELS AND COMBUSTION

Classifications of Fuels – Characteristics of Fuels- Calorific Value – Units, Numerical Problems.

Solid Fuels: Coal-Classification and Analysis (proximate and ultimate), Coke :Characteristics of metallurgical coke, Manufacture of Metallurgical Coke by Otto Hoffmann's by product oven processes.

Liquid Fuels:

Petroleum: Refining of Petroleum, Gasoline- Octane Number, Diesel -Cetane Number, Synthetic Petrol: Bergius Processes, Fischer Troph's synthesis

Power Alcohol: Manufacture, Advantages and Disadvantages of Power Alcohol

Gaseous Fuels: Natural gas, Producer gas, Water gas, Coal gas and Biogas. Determination calorific value of Gases fuels by Junker's calorimeter.

Combustion: Basic principles and numerical problems, Flue Gas analysis by Orsat's apparatus.

UNIT – V CHEMISTRY OF ENGINEERING MATERIALS

- i) Cement: Composition, Classification, preparation (Dry and Wet processes), Setting and Hardening (Hydration and Hydrolysis)
- ii) Refractories: Introduction, Classification, properties and applications
- iii) Lubricants: Introduction, classification (Solid, liquid, semi solid, emulsion and synthetic), Theory of lubrication (Thin film, Thick film & Extreme pressure), properties of lubricants and applications.
- iv) Carbon clusters: Fullerenes and Carbon Nano Tubes (CNT)

Text Books:

1. Engineering Chemistry, First Edition, Jayaveera KN, Subba Reddy GVand Ramachandraiah C, McGraw Hill Higher Education, New Delhi, 2013.

 A Text Book of Enigneering Chemistry, 15th Edition, Jain and Jain, Dhanapathi Rai Publications, New Delhi, 2013.

References:

- A Text book of Engineering Chemistry, 12th Edition, SS Dhara,Uma, S. Chand Publications, New Delhi, 2010.
- 2. Engineering Chemistry, First edition, K.B. Chandra Sekhar, UN.Das and Sujatha Mishra, SCITECH Publications India Pvt Limited, 2010.
- 3. Engineering Chemistry, First edition, Seshamaheswaramma K and Mridula Chugh, Pearson Education, 2013.

Outcomes: The student is expected to:

- Differentiate between hard and soft water. Understand the disadvantages of using hard water domestically and industrially. Select and apply suitable treatments domestically and industrially.
- Understand the electrochemical sources of energy
- Understand industrially based polymers, various engineering materials.

B. Tech I-I Sem. (ECE) L T P C 3 1 0 3

(15A01101) ENVIRONMENTAL STUDIES

(Common to ECE/EIE/ME/IT)

Objectives:

To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life to save earth from the inventions by the engineers.

UNIT - I

MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES: – Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT - II

ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- Forest ecosystem.
- b. Grassland ecosystem

- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION: Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III

ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV

SOCIAL ISSUES AND THE ENVIRONMENT: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V

HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Programmed. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain — Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds — river, hill slopes, etc..

Text Books:

- 1. Text Book of Environmental Studies for Undergraduate Cources, Erach Bharucha, Universities Press Pvt Ltd, Hyderabad. 2nd Edition 2013.
- 2. Environmental Studies by Kaushik, New Age Pubilishers.

References:

- 1. Environmental Studies by Rajagopalan, Oxford Pubilishers.
- 2. Comprehensive Environmental studies by J.P.Sharma, Laxmi publications.
- 3. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela Printice hall of India Private limited.

Outcomes:

- Students will get the sufficient information that will clarify modern environmental concepts like equitableuse of natural resources, more sustainable life styles etc.
- Students will realize the need to change their approach so as to perceive our own environmental issuescorrectly, using practical approach based on observation and self learning.
- Students become conversant with the fact that there is a need to create a concern for our environment that will trigger pro-environmental action; including simple activities we can do in our daily life to protect it.
- By studying environmental sciences, students is exposed to the environment that enables one to find out solution of various environmental problems encountered on and often.
- At the end of the course, it is expected that students will be able to identify and analyze environmental problems as well as the risks associated with these

problems and efforts to be taken to protect the environment from getting polluted. This will enable every human being to live in a more sustainable manner.

B. Tech I-I Sem. (ECE)

L T P C

(15A52102) ENGLISH LANGUAGE COMMUNICATION SKILLS (ELCS) LAB

(Common to All Branches)

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations and contexts.

Objectives:

- To enable students to learn better pronunciation through stress on word accent, intonation, and rhythm.
- To help the second language learners to acquire fluency in spoken English and neutralize mother tongue influence
- To train students to use language appropriately for interviews, group discussion and public speaking

UNIT - 1

- 1. Phonetics -importance
- 2. Introduction to Sounds of Speech
- 3. Vowels and consonants sounds
- 4. Phonetic Transcription

UNIT - II

- 5. Word Stress
- 6. Syllabification
- 7. Rules of word stress
- 8. Intonation

UNIT - III

- 9. Situational Dialogues
- 10. Role Plays
- 11. JAM
- 12. Describing people/objects/places

UNIT - IV

- 13. Debates
- 14. Group Discussions
- 15. Interview skills

UNIT - V

- 16. Video speech writing
- Book reviews -oral and written.

Minimum Requirements for ELCS Lab:

The English Language Lab shall have two parts:

- Computer Assisted Language Learning (CALL) Lab: The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self- study by learners.
- The Communication Skills Lab with movable chairs and audio-visual aids with a P.A. system, Projector, a digital stereo-audio & video system and camcorder etc.
 System Requirement (Hardware component):

Computer network with LAN with minimum 60 multimedia systems with the following specifications:

- i) P IV Processor
 - a) Speed 2.8 GHZ
 - b) RAM 512 MB Minimum
 - c) Hard Disk 80 GB
- ii) Headphones of High quality

Suggested Software:

- 1. Clarity Pronunciation Power Part I (Sky Pronunciation)
- 2. Clarity Pronunciation Power part II
- 3. K-Van Advanced Communication Skills
- Walden InfoTech Software.

References:

- A Textbook of English Phonetics for Indian Students 2nd Ed T. Balasubramanian. (Macmillian),2012.
- A Course in Phonetics and Spoken English, Dhamija Sethi, Prentice-Hall of India Pvt.Ltd
- Speaking English Effectively, 2nd Edition Krishna Mohan & NP Singh, 2011. (Mcmillan).
- 4. A Hand book for English Laboratories, E.Suresh Kumar, P.Sreehari, Foundation Books, 2011
- Spring Board Succes, Sharada Kouhik, Bindu Bajwa, Orient Blackswan, Hyderbad, 2010.

Outcomes:

- Become active participants in the learning process and acquire proficiency in spoken English.
- Speak with clarity and confidence thereby enhance employability skills.

B. Tech I-I Sem. (ECE) L T P C 0 0 4 2

(15A51102) ENGINEERING CHEMISTRY LAB

(Common to ECE/EIE/ME/IT)

Objectives:

- Will learn practical understanding of the redox reaction
- Will learn the preparation and properties of synthetic polymers and other material that would provide sufficient impetus to engineer these to suit diverse applications
- Will also learn the hygiene aspects of water would be in a position to design methods to produce potable water using modern technology.

List of Experiments:

- 1. Determination of total hardness of water by EDTA method.
- 2. Determination of Copper by EDTA method.
- 3. Estimation of Dissolved Oxygen by Winkler's method
- 4. Estimation of iron (II) using diphenylamine indicator (Dichrometry Internal indicator method).
- 5. Determination of Alkalinity of Water
- 6. Determination of acidity of Water
- 7. Preparation of Phenol-Formaldehyde (Bakelite)
- 8. Determination of Viscosity of oils using Redwood Viscometer I
- 9. Determination of Viscosity of oils using Redwood Viscometer II
- 10. Determination of calorific value of gaseous fuels by Junker's Calorimeter
- 11. Conductometric estimation of strong acid using standard sodium hydroxide solution

- 12. Determination of Corrosion rate and inhibition efficiency of an inhibitor for mild steel in hydrochloric acid medium.
- 13. Potentio metric determination of iron using standard potassium dichromate
- 14. Colorometric estimation of manganese.
- pH meter calibration and measurement of pH of water and various other samples.

(Any 10 experiments from the above list)

References:

- Vogel's Text book of Quantitative Chemical Analysis, Sixth Edition Mendham J et al. Pearson Education, 2012.
- 2. Chemistry Practical— Lab Manual, First edition, Chandra Sekhar KB, Subba Reddy GV and Jayaveera KN, SM Enterprises, Hyderabad, 2014.

Outcomes:

- Would be confident in handling energy storage systems and would be able combat chemical corrosion
- Would have acquired the practical skill to handle the analytical methods with confidence.
- Would feel comfortable to think of design materials with the requisite properties
- Would be in a position to technically address the water related problems.

B. Tech I-I Sem. (ECE)

L T P C

(15A05102) COMPUTER PROGRAMMING LAB

(Common to All branches)

Objectives:

- Learn C Programming language
- To make the student solve problems, implement algorithms using C language.

List of Experiments/Tasks

- 1. Practice DOS and LINUX Commands necessary for design of C Programs.
- Study of the Editors, Integrated development environments, and Compilers in chosen platform.
- 3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the programming environment.
- 4. Practice programs: Finding the sum of three numbers, exchange of two numbers, maximum of two numbers, To read and print variable values of all data types of C language, to find the size of all data types, to understand the priority and associativity of operators using expressions, to use different library functions of C language.
- 5. Write a program to find the roots of a Quadratic equation.
- 6. Write a program to compute the factorial of a given number.
- 7. Write a program to check whether the number is prime or not.
- 8. Write a program to find the series of prime numbers in the given range.
- 9. Write a program to generate Fibonacci numbers in the given range.
- 10. Write a program to find the maximum of a set of numbers.
- 11. Write a program to reverse the digits of a number.
- 12. Write a program to find the sum of the digits of a number.
- 13. Write a program to find the sum of positive and negative numbers in a given set of numbers.
- 14. Write a program to check for number palindrome.
- 15. Write a program to evaluate the sum of the following series up to 'n' terms $e^{x}=1+x+x^{2}/2!+x^{3}/3!+x^{4}/4!+\cdots$
- 16. Write a program to generate Pascal Triangle.
- Write a program to read two matrices and print their sum and product in the matrix form.
- 18. Write a program to read matrix and perform the following operations.
 - i. Find the sum of Diagonal Elements of a matrix.
 - ii. Print Transpose of a matrix.

- iii. Print sum of even and odd numbers in a given matrix.
- 19. Write a program to accept a line of characters and print the number of Vowels, Consonants, blank spaces, digits and special characters.
- 20. Write a program to insert a substring in to a given string and delete few characters from the string. Don't use library functions related to strings.
- Write a program to perform the operations addition, subtraction, multiplication of complex numbers.
- 22. Write a program to split a 'file' in to two files, say file1 and file2. Read lines into the 'file' from standard input. File1 should consist of odd numbered lines and file2 should consist of even numbered lines.
- 23. Write a program to merge two files.
- Write a program to implement numerical methods Lagrange's interpolation, Trapezoidal rule.
- 25. Write a program to read a set of strings and sort them in alphabetical order.
- 26. Write a program to read two strings and perform the following operations without using built-in string Library functions and by using your own implementations of functions.
 - i. String length determination Strings

ii .Compare Two

iii. Concatenate them, if they are not equal

iv. String

reversing

- 27. Write programs using recursion for finding Factorial of a number, GCD, LCM, and solving Towers of Hanoi problem.
- 28. Write a program to exchange two numbers using pointers.
- 29. Write a program to read student records into a file. Record consists of rollno, name and marks of a student in six subjects and class. Class field is empty initially. Compute the class of a student. The calculation of the class is as per JNTUA rules. Write the first class, second class, third class and failed students lists separately to another file.
- 30. A file consists of information about employee salary with fields employeeid, name, Basic, HRA, DA, IT, other-deductions, Gross and Net salary. Initially only employeeid, name, and basic have valid values. HRA is taken as 10% of the basic, DA is taken as 80% of basic, IT is 20% of the basic, other deductions is user specified. Compute the Gross and Net salary of the employee and update the file.
- 31. Write a program to perform Base (decimal, octal, hexadecimal, etc) conversion.
- 32. Write a program to find the square root of a number without using built-in library function.
- 33. Write a program to convert from string to number.
- 34. Write a program to implement pseudo random generator.
- 35. Write a program to generate multiplication tables from 11 to 20.
- 36. Write a program to express a four digit number in words. For example 1546 should be written as one thousand five hundred and forty six.

- 37. Write a program to generate a telephone bill. The contents of it and the rate calculation etc should be as per BSNL rules. Student is expected to gather the required information through the BSNL website.
- 38. Write a program to find the execution time of a program.
- 39. Design a file format to store a person's name, address, and other information. Write a program to read this file and produce a set of mailing labels

Note:

- 1. Instructors are advised to conduct the lab in LINUX/UNIX environment also
- The above list consists of only sample programs. Instructors may choose other
 programs to illustrate certain concepts, wherever is necessary. Programs
 should be there on all the concepts studied in Theory. Instructors are advised
 to change atleast 25% of the programs every year until the next syllabus
 revision.

References:

- 1. "How to Solve it by Computer", R.G. Dromey, Pearson.
- "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, Pearson.
- 3. "Let us C", Yeswant Kanetkar, BPB publications
- 4. "Pointers in C", Yeswant Kanetkar, BPB publications.
- 5. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao. Pearson Education.

Outcomes:

- Apply problem solving techniques to find solutions to problems
- Able to use C language features effectively and implement solutions using C language.
- Improve logical skills.

B. Tech I-II Sem. (ECE)

L T P C

(15A52201) ENGLISH FOR PROFESSIONAL COMMUNICATION

1. INTRODUCTION:

English is a global language and has international appeal and application. It is widely used in a variety of contexts and for varied purposes. The students would find it useful both for social and professional development. There is every need to help the students acquire skills useful to them in their career as well as workplace. They need to write a variety of documents and letters now extending into professional domain that cuts across business and research also. The syllabus has been designed to enhance communication skills of the students of engineering and pharmacy. The prescribed book serves the purpose of preparing them for everyday communication and to face the global competitions in future.

The text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and learner-centered. They should be encouraged to participate in the classroom activities keenly.

In addition to the exercises from the text done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

2. OBJECTIVES:

- To develop confidence in the students to use English in everyday situations.
- 2. To enable the students to read different discourses so that they appreciate English for science and technologies.
- 3. To improve familiarity with a variety of technical writings.
- 4. To enable the students to acquire structure and written expressions required for their profession.
- 5. To develop the listening skills of the students.

3. SYLLABUS:

UNIT -I

Topics: Group discussion, cause and effect, events and perspectives, debate, if conditional, essay writing.

Text: LESSONS FROM THE PAST from MINDSCAPES

Importance of History - Differing Perspectives - Modern Corporatism - Lessons From The Past

UNIT-II

Topics: Idioms, essay writing, power point presentation, modals, listening and rewriting, preparing summary, debate, group discussion, role play, writing a book review, conversation

Text: 'ENERGY' from MINDSCAPES

Renewable and Non-Renewable Sources - Alternative Sources - Conservation -Nuclear Energy

UNIT-III

Topics: Vocabulary, impromptu speech, creative writing, direct and indirect speech, fixed expressions, developing creative writing skills, accents, presentation skills, making posters, report writing

Text: 'ENGINEERING ETHICS' from MINDSCAPES

Challenger Disaster - Biotechnology - Genetic Engineering - Protection From Natural Calamities

UNIT-IV

Topics: Vocabulary, Conversation, Collocation, Group discussion, Notemaking, Clauses, Interpreting charts and tables , Report writing.

Text: 'TRAVEL AND TOURISM' from MINDSCAPES

Advantages and Disadvantages of Travel - Tourism - Atithi Devo Bhava - Tourism in India

UNIT-V

Topics: Vocabulary, phrasal verbs, writing a profile, connectives, discourse markers, problem-solving, telephone skills, application letters, curriculum vitae, interviews (telephone and personal)

Text: 'GETTING JOB-READY' from MINDSCAPES

SWOT Analysis - Companies And Ways Of Powering Growth - Preparing For Interviews

Prescribed Text

MINDSCAPES: English for Technologists and Engineers, Orient Blackswan, 2014.

REFERENCES:

- 1. **Effective Tech Communication,** Rizvi, Tata McGraw-Hill Education, 2007.
- 2. **Technical Communication,** Meenakshi Raman, Oxford University Press.
- 3. **English Conversations Prcatice,** Grant Taylor, Tata Mc GrawHill publications,2013.
- 4.Practical English Grammar. Thomson and Martinet, OUP, 2010.

Expected Outcomes:

At the end of the course, students would be expected to:

- 1. Have acquired ability to participate effectively in group discussions.
- 2. Have developed ability in writing in various contexts.
- 3. Have acquired a proper level of competence for employability.

B. Tech I-II Sem. (ECE)

L T P (

(15A54201) MATHEMATICS - II

(Common to All Branches)

<u>**Objectives:**</u> Our emphasis will be more on conceptual understanding and application of Fourier series, Fourier, Z and Laplace transforms and solution of partial differential equations.

UNIT - I

Laplace transform of standard functions – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function.

Differentiation and integration of transform – Application of Laplace transforms to ordinary differential equations of first and second order.

UNIT - II

Fourier Series: Determination of Fourier coefficients – Fourier series – Even and odd functions – Fourier series in an arbitrary interval – Even and odd periodic continuation – Half-range Fourier sine and cosine expansions- Parseval's formula- Complex form of Fourier series.

UNIT - III

Fourier integral theorem (only statement) – Fourier sine and cosine integrals. Fourier transform – Fourier sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

UNIT - IV

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Method of separation of variables – Solutions of one dimensional wave equation, heat equation and two-dimensional Laplace's equation under initial and boundary conditions.

UNIT - V

z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.

TEXT BOOKS:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Engineering Mathematics, Volume II, E. Rukmangadachari Pearson Publisher.

REFERENCES:

- 1. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad S. Chand publication.
- 2. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.

<u>Outcomes:</u>The student gains the knowledge to tackle the engineering problems using the concepts of Fourier series, various transforms and partial differential equations.

B. Tech I-II Sem. (ECE)

L T P (

(15A04201) NETWORK ANANLYSIS

(Common to ECE & EIE)

Objective:

To help students develop an understanding on analyzing electrical circuits using various techniques. To make the student familiarize with the fundamental concepts of coupled circuits, resonance, filters and to analyze the transient response in electric circuits.

UNIT I

Circuit Analysis Techniques: Voltage and Current Laws, Basic Nodal and Mesh Analysis, ,Network Theorems- Linearity and Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power Transfer, Milliman's theorems. Source Transformation.

UNIT II

DC Transient Circuits : The Source free RL, RC & RLC Circuits. Natural & Forced Response of RL,RC & RLC Circuits. RC & RL Circuit responses to Pulse and Exponential signals.

Unit III

Sinusoidal steady state analysis: Characteristics of Sinusoids, Forced Response of Sinusoidal Functions, The Complex forcing Function, The Phasor, Phasor relationships for R,L, and C, Impedance, Admittance. Instantaneous Power, Average Power, Effective Values of Current and Voltage, Apparent Power, Power Factor, Complex Power.

UNIT IV

Resonance: Introduction, Definition of 'quality factor **Q**' of inductor and capacitor, Series resonance, Bandwidth of the series resonant circuits, Parallel resonance (or anti-resonance), Conditions for maximum impedance, Currents in parallel resonance, , Bandwidth of parallel

resonant circuits, General case of parallel resonance circuit. **Magnetically Coupled Circuits:** Mutual Inductance, Energy Considerations, The Linear Transformer, The Ideal Transformer

Unit V

Two Port Networks & Filters: Relationship of two port variables, Short circuit Admittance parameters, Open circuit Impedance parameters, Transmission Parameters, Hybrid Parameters, Relationship between parameter sets, Parallel connection of two port networks.

Filters: Introduction, the neper & decibel, Characteristic Impedance of symmetrical networks, Currents & voltage ratios as exponentials; the propagation constant, Hyperbolic trigonometry, Properties of symmetrical networks, Filter fundamentals; pass and stop bands,

Behavior of characteristic impedance, The constant – k low pass filter, the constant – k high pass filter, band Pass Filters ,band reject filters - illustrated problems.

Text Books:

- 1. W H Hayt, J E Kemmerly and S M Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill, 7th edition, 2010.
- **2.** John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.

Reference Books:

 Van Valkenburg, "Network Analysis", PHI, 3rd Edition, 2011.
 N C Jagan & C Lakshminarayana "Network Analysis" BS Publications 3rd Edn. 2014

B. Tech I-II Sem. (ECE)

L T P (

(15A56101) ENGINEERING PHYSICS

(Common to All Branches)

Objectives:

- To evoke interest on applications of superposition effects like interference and diffraction, the mechanisms of emission of light, achieving amplification of electromagnetic radiation through stimulated emission, study of propagation of light through transparent dielectric waveguides along with engineering applications.
- To enlighten the periodic arrangement of atoms in crystals, direction of Bragg planes, crystal structure determination by X-rays and non-destructive evaluation using ultrasonic techniques.
- To get an insight into the microscopic meaning of conductivity, classical and quantum free electron model, the effect of periodic potential on electron motion, evolution of band theory to distinguish materials and to understand electron transport mechanism in solids.
- To open new avenues of knowledge and understanding semiconductor based electronic devices, basic concepts and applications of semiconductors and magnetic materials have been introduced which find potential in the emerging micro device applications.
- To give an impetus on the subtle mechanism of superconductors in terms of conduction of electron pairs using BCS theory, different properties exhibited by them and their fascinating applications. Considering the significance of microminiaturization of electronic devices and significance of low dimensional materials, the basic concepts of nanomaterials, their synthesis, properties and applications in emerging technologies are elicited.

UNIT - I

PHYSICAL OPTICS, LASERS AND FIBRE OPTICS

Physical Optics: Interference (Review) – Interference in thin film by reflection –Newton's rings –Diffraction (Review) - Fraunhofer diffraction due to single slit, double slit and diffraction grating.

Lasers: Characteristics of laser – Spontaneous and stimulated emission of radiation – Einstein's coefficients — Population inversion – Excitation mechanism and optical resonator – Nd:YAG laser - He-Ne laser – Semiconductor Diode laser - Applications of lasers

Fiber optics: Introduction - construction and working principle of optical fiber -Numerical aperture and acceptance angle - Types of optical fibers - Attenuation and losses in Optical fibers -Block diagram of Optical fiber communication system - Applications of optical fibers

UNIT - II

CRYSTALLOGRAPHY AND ULTRASONICS

Crystallography: Introduction - Space lattice -Unit cell - Lattice parameters -Bravias lattice - Crystal systems - Packing fractions of SC, BCC and FCC - Directions and planes in crystals - Miller indices - Interplanar spacing in cubic crystals - X-ray diffraction - Bragg's law - Powder method.

Ultrasonics: Introduction – Production of ultrasonics by piezoelectric method – Properties and detection – Applications in non-destructive testing.

UNIT - III

QUANTUM MECHANICS AND ELECTRON THEORY

Quantum Mechanics: Matter waves – de'Broglie hypothesis and properties - Schrodinger's time dependent and independent wave

equations – Physical significance of wave function - Particle in one dimensional infinite potential well.

Electron theory: Classical free electron theory – Equation for electrical conductivity - Quantum free electron theory – Fermi-Dirac distribution – Source of electrical resistance – Kronig-Penny model (qualitative treatment) – Origin of bands in solids – Classification of solids into conductors, semiconductors and insulators.

UNIT - IV

SEMICONDUCTORS AND MAGNETIC MATERIALS

Semiconductors: Intrinsic and extrinsic semiconductors (Qualitative treatment) – Drift & diffusion currents and Einstein's equation – Hall effect - Direct and indirect band gap semiconductors – Formation of p-n junction.

Magnetic materials: Introduction and basic definitions – Origin of magnetic moments – Bohr magnetron – Classification of magnetic materials into dia, para, ferro, antiferro and ferri magnetic materials (Qualitative treatment) – Hysteresis - Soft and hard magnetic materials, applications of magnetic materials.

UNIT - V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

Superconductivity: Introduction - Effect of magnetic field - Meissner effect - Type I and Type II superconductors - Flux quantization - Penetration depth - BCS theory (qualitative treatment) — Josephson effects - Applications of superconductors.

Physics of Nanomaterials: Introduction - Significance of nanoscale and types of nanomaterials - Physical properties: optical, thermal, mechanical and magnetic properties - Synthesis of nanomaterials by Top down and bottom up approaches: ball mill, chemical vapour deposition, and sol gel -Applications of nanomaterials.

Text Books:

- 1. Engineering Physics K.Thyagarajan, 5th Edition, MacGraw Hill Publishers, NewDelhi, 2014.
- 2. Physics for Engineers N.K Verma, 1st Edition, PHI Learning Private Limited, New Delhi, 2014.

References:

- Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, 10th Edition, S.Chand and Company, New Delhi, 2014.
- Engineering Physics D K Pandey, S. Chaturvedi, 2nd Edition, Cengage Learning, New Delhi, 2013.
- 3. Engineering Physics D.K Bhattacharya, Poonam Tandon, 1nd

Edition, Oxford University Press, New Delhi, 2015.

Outcomes:

- The different realms of physics and their applications in both scientific and technological systems are achieved through the study of physical optics, lasers and fibre optics.
- The important properties of crystals like the presence of longrange order and periodicity, structure determination using Xray diffraction are focused along with defects in crystals and ultrasonic non-destructive techniques.
- The discrepancies between the classical estimates and laboratory observations of physical properties exhibited by materials would be lifted through the understanding of quantum picture of subatomic world.
- The electronic and magnetic properties of materials were successfully explained by free electron theory and the bases for the band theory are focused.
- The properties and device applications of semiconducting and magnetic materials are illustrated.

The importance of superconducting materials and nanomaterials along with their engineering applications are well elucidated.

B. Tech I-II Sem. (ECE)

L T Drg C

(15A03101) ENGINEERING DRAWING

(Common to All Branches)

Objectives:

- To gain and understanding of the basics of geometrical constructions of various planes and solids, understanding system of graphical representation of various objects and various views to draft and read the products to be designed and eventually for manufacturing applications.
- To learn about various projections, to understand complete dimensions and details of object.
- Ultimately student must get imaginary skill to put an idea of object, circuit, assembly of parts in black & white, to design a product and to understand the composition, which can be understood universally.

UNIT I

Introduction to Engineering Drawing: Principles of Engineering Graphics and their Significance- Conventions in Drawing-Lettering – BIS Conventions. Curves used in Engineering Practice. a) Conic Sections including the Rectangular Hyperbola- General method only, b) Cycloid, Epicycloid and Hypocycloid

UNIT II

Scales: Plain, Diagonal and Vernier;

Projection of Points: Principles of orthographic projection – Convention – First angle projections, projections of points.

UNIT III

Projections of Lines: lines inclined to one or both planes, Problems on projections, Finding True lengths.

Projections of Planes: Projections of regular plane surfaces- plane surfaces inclined to both planes.

UNIT IV

Projections of Solids: Projections of Regular Solids with axis inclined to both planes.

Developments of Solids: Development of Surfaces of Right Regular Solids-Prism, Cylinder, Pyramid, Cone.

UNIT V

Isometric and Orthographic Projections: Principles of isometric projection- Isometric Scale- Isometric Views- Conventions- Isometric Views of lines, Planes, Simple solids (cube, cylinder and cone). Isometric projections of spherical parts. Conversion of isometric Views to Orthographic Views.

Text Books:

- 1. Engineering Drawing, N.D. Bhatt, Charotar Publishers
- 2. Engineering Drawing, K.L. Narayana& P. Kannaih, Scitech Publishers, Chennai

References:

- 1. Engineering Drawing, Johle, Tata McGraw-Hill Publishers
- 2. Engineering Drawing, Shah and Rana, 2/e, Pearson Education
- 3. Engineering Drawing and Graphics, Venugopal/New age Publishers
- 4. Engineering Graphics, K.C. John, PHI,2013
- 5. Engineering Drawing, B.V.R. Guptha, J.K. Publishers

Outcomes:

- Drawing 2D and 3D diagrams of various objects.
- Learning conventions of Drawing, which is an Universal Language of Engineers.
- Drafting projections of points, planes and solids.

B. Tech I-II Sem. (ECE)

L T P C

(15A04202) NETWORK ANALYSIS LAB

(Common to ECE & EIE)

- 1. Verification of KCL & KVL for any network.
- 2. Verification of Superposition Theorem with analysis.
- 3. Verification of Thevenin's Theorem with analysis.
- 4. Verification of Maximum Power Transfer Theorem with analysis.
- 5. Analysis of RL & RC circuits for pulse excitation.
- 6. Frequency response of series resonance circuit with analysis and design.
- 7. Frequency response of parallel resonance circuit with analysis and design.
- 8. Design and frequency response of constant 'k' low pass & high pass filters.
- 9. Design and frequency response of Band pass filter.
- 10. Design and frequency response of Notch filter.
- Determination of phase of a sinusoidal signal when passed through RL or RC circuits.
- 12. Impedance transformation through transformer.

Note:- Ten experiments must be conducted in the semester.

Components & Equipment required:-

- 1. Bread boards, passive components, R, L, and C with different ratings.
- 2. Dual power supplies, function generators, CROs.

B. Tech I-II Sem. (ECE)

(15A56102) ENGINEERING PHYSICS LABORATORY

(Common to All Branches)

Objectives:

- Will recognize the important of optical phenomenon like Interference and diffraction.
- Will understand the role of optical fiber parameters and signal losses in communication.
- Will recognize the importance of energy gap in the study of conductivity and hall effect in a semiconductor
- Will understand the applications of B H curve.
- Will acquire a practical knowledge of studying the crystal structure in terms of lattice constant.
- Will recognize the application of laser in finding the particle size and its role in diffraction studies.
- Will learn to synthesis of the nanomaterials and recognize its importance by knowing its nano particle size and its impact on its properties.

Any 10 of the following experiments has to be performed during the I year I semester

- 1. Determination of radius of curvature of a Plano-convex lens by forming Newton's rings.
- 3. Determination of wavelength of given source using diffraction grating in normal incidence method.
- 4. Determination of Numerical aperture, acceptance angle of an optical fiber.
- 5. Energy gap of a Semiconductor diode.
- 6. Hall effect Determination of mobility of charge carriers.
- 7. B-H curve Determination of hysteresis loss for a given magnetic material.
- 8. Determination of Crystallite size using X-ray pattern (powder) using debye-scheerer method.
- 9. Determination of particle size by using laser source.

- 10. Determination of dispersive power of a prism.
- 11. Determination of thickness of the thin wire using wedge Method.
- 12. Laser: Diffraction due to single slit
 - 13. Laser: Diffraction due to double slit
 - 14. Laser: Determination of wavelength using diffraction grating
 - 15. Magnetic field along the axis of a current carrying coil Stewart and Gee's method.
 - 16. Synthesis of nanomaterial by any suitable method.

References:

- Engineering Physics Practicals NU Age Publishing House, Hyderabad.
- 2. Engineering Practical physics Cengage Learning, Delhi.

Outcomes:

- Would recognize the important of optical phenomenon like Interference and diffraction.
- Would have acquired the practical application knowledge of optical fiber, semiconductor, dieclectric and magnetic materials, crystal structure and lasers by the study of their relative parameters.

Would recognize the significant importance of nanomaterials in various engineering fields.

B. Tech I-II Sem. (ECE)

(15A99201) ENGINEERING & I.T. WORKSHOP

ENGINEERING WORKSHOP

Course Objective:

The budding Engineer may turn out to be a technologist, scientist, entrepreneur, practitioner, consultant etc. There is a need to equip the engineer with the knowledge of common and newer engineering materials as well as shop practices to fabricate, manufacture or work with materials. Essentially he should know the labour involved, machinery or equipment necessary, time required to fabricate and also should be able to estimate the cost of the product or job work. Hence engineering work shop practice is included to introduce some common shop practices and on hand experience to appreciate the use of skill, tools, equipment and general practices to all the engineering students.

1. TRADES FOR EXERCISES:

- a. Carpentry shop- Two joints (exercises) involving tenon and mortising, groove and tongue: Making middle lap T joint, cross lap joint, mortise and tenon T joint, Bridle T joint from out of 300 x 40 x 25 mm soft wood stock
- b. Fitting shop- Two joints (exercises) from: square joint, V joint, half round joint or dove tail joint out of $100 \times 50 \times 5 \text{ mm}$ M.S. stock
- c. Sheet metal shop- Two jobs (exercises) from: Tray, cylinder, hopper or funnel from out of 22 or 20 guage G.I. sheet
- d. House-wiring- Two jobs (exercises) from: wiring for ceiling rose and two lamps (bulbs) with independent switch controls with or without looping, wiring for stair case lamp, wiring for a water pump with single phase starter.
- e. Foundry– Preparation of two moulds (exercises): for a single pattern and a double pattern.

f. Welding – Preparation of two welds (exercises): single V butt joint, lap joint, double V butt joint or T fillet joint.

2. TRADES FOR DEMONSTRATION:

- a. Plumbing
- b. Machine Shop
- c. Metal Cutting

Apart from the above the shop rooms should display charts, layouts, figures, circuits, hand tools, hand machines, models of jobs, materials with names such as different woods, wood faults, Plastics, steels, meters, gauges, equipment, CD or DVD displays, First aid, shop safety etc. (though they may not be used for the exercises but they give valuable information to the student). In the class work or in the examination knowledge of all shop practices may be stressed upon rather than skill acquired in making the job.

References:

- Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Pvt. Ltd., 2009
- 2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers.
- 3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, 4/e Vikas
- 4. Dictionary of Mechanical Engineering, GHF Nayler, Jaico Publishing House.

I.T. WORKSHOP

Course Objective:

- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations
- To make the students know about the internal parts of a computer, assembling a computer from the parts, preparing a computer for use by installing the operating system
- To learn about Networking of computers and use Internet facility for Browsing and Searching.

Learning Outcome:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors
- Prepare Slide presentations using the presentation tool
- Interconnect two or more computers for information sharing
- Access the Internet and Browse it to obtain the required information
- Install single or dual operating systems on computer

Preparing your Computer (5 weeks)

Task 1: Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2: Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods available (eg: beeps). Students should record the process of assembling and trouble shooting a computer.

Task 3: Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4: Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet (4 weeks)

Task 5: Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc should be done by the student. The entire process has to be documented.

Task 6: Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc.

If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating e-mail account.

Task 7: Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools (6 weeks)

Task 8: Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the color, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the

images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered.

Task 9: Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet application considered.

Task 10: Presentations: creating, opening, saving and running the presentations, Selecting the style for slides, formatting the slides with different fonts, colors, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show. Students should submit a user manual of the Presentation tool considered.

Optional Tasks:

Task 11: Laboratory Equipment: Students may submit a report on specifications of various equipment that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop computer
- Server computer
- Switch (computer science related)
- Microprocessor kit
- Micro controller kit
- Lathe machine
- Generators
- Construction material
- Air conditioner

- UPS and Inverter
- RO system
- Electrical Rectifier
- CRO
- Function Generator
- Microwave benches

Task 12: Software: Students may submit a report on specifications of various software that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. The software may be proprietary software or Free and Open source software. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop operating system
- Server operating system
- Antivirus software
- MATLAB
- CAD/CAM software
- AUTOCAD

References:

- 1. Introduction to Computers, Peter Norton, Mc Graw Hill
- 2. MOS study guide for word, Excel, Powerpoint & Outlook Exams", Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs", Bigelows, TMH

B. Tech II-I Sem. (ECE)

L T P C

(15A54301) MATHEMATICS-III

OBJECTIVES:

 This course aims at providing the student with the concepts of Matrices, Numerical Techniques and Curve fitting.

OUTCOMES:

 The student will be able to analyze engineering problems using the concepts of Matrices and Numerical methods

UNIT – I

Elementary row transformations-Rank – Echelon form, normal form – Consistency of System of Linear equations. Linear transformations. Hermitian, Skew-Hermitian and Unitary matrices and their properties. Eigen Values, Eigen vectors for both real and complex matrices. Cayley – Hamilton Theorem and its applications – Diagonolization of matrix. Calculation of powers of matrix and inverse of a matrix. Quadratic forms – Reduction of quadratic form to canonical form and their nature.

UNIT - II

Solution of Algebraic and Transcendental Equations: The Bisection Method – The Method of False Position– Newton-Raphson Method, Solution of linear simultaneous equation: Crout's triangularisation method, Gauss - Seidal iteration method.

UNIT – III

Interpolation: Newton's forward and backward interpolation formulae – Lagrange's formulae. Gauss forward and backward formula, Stirling's formula, Bessel's formula.

UNIT - IV

Curve fitting: Fitting of a straight line – Second degree curve – Exponentional curve-Power curve by method of least squares. Numerical Differentiation for Newton's interpolation formula. Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule.

UNIT - V

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Euler's Method-Runge-Kutta Methods. Numerical solutions of Laplace equation using finite difference approximation.

TEXT BOOKS:

- 3. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 4. Introductory Methods of Numerical Analysis, S.S. Sastry, PHI publisher.

REFERENCES:

- Engineering Mathematics, Volume II, E. Rukmangadachari Pearson Publisher.
- 3. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S. Chand publication.
- 3. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 4. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.

B. Tech II-I Sem. (ECE) L T P C 3 1 0 3

(15A04301) ELECTRONIC DEVICES AND CIRCUITS

Course Objectives:

To give understanding on semiconductor physics of the intrinsic, p and n materials, characteristics of the p-n junction diode, diode's application in electronic circuits, Characteristics of BJT,FET,MOSFET, characteristics of special purpose electronic devices. To familiarize students with dc biasing circuits of BJT, FET and analyzing basic transistor amplifier circuits.

Course Outcomes:

Upon completion of the course, students will:

- Analyze the operating principles of major electronic devices, its characteristics and applications.
- Design and analyze the DC bias circuitry of BJT and FET.
- Design and analyze basic transistor amplifier circuits using BJT and FET.

UNIT- I

Junction Diode Characteristics: Open circuited p-njunction, Biased p-n junction,p-n junction diode, current components in PN junction Diode, diode equation,V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance, energy band diagram of PN junction Diode.

Special Semiconductor Diodes: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, LCD, Photo diode, Varactor diode, Tunnel Diode, DIAC, TRIAC, SCR, UJT. Construction, operation and characteristics of all the diodes is required to be considered.

UNIT- II

Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter, Capacitor filter, L- section filter, Π -section filter, Multiple L- section and Multiple Π section filter ,comparison of various filter circuits in terms of ripple factors.

UNIT-III

Transistor Characteristics:

BJT:Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collectorconfigurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.

FET:FETtypes, construction, operation, characteristics, parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

UNIT-IV

Transistor Biasing and Thermal Stabilization : Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE} , Ic, and β , Stability factors, (S, S', S'), Bias compensation, Thermal runaway, Thermal stability.

FET Biasing- methods and stabilization.

UNIT- V

Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

TEXT BOOKS:

- J. Millman, C. Halkias, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 4th Edition. 2010.
- 2. David A.Bell, "Electronic Devices and Circuits", Fifth Edition, Oxford University Press, 2009.
- Salivahanan, Kumar, Vallavaraj, "Electronic Devices and Circuits", Tata Mc-Graw Hill, Second Edition

REFERENCES:

- Jacob Millman, C. Halkies, C.D.Parikh, "Integrated Electronics", Tata Mc-Graw Hill, 2009.
- 2. R.L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits", Pearson Publications, 9th Edition, 2006.
- 3. BV Rao, KBR Murty, K Raja Rajeswari, PCR Pantulu, "Electronic Devices and Circuits", Pearson, 2nd edition.

B. Tech II-I Sem. (ECE) L T P C 3 1 0 3

(15A04302) SWITCHING THEORY AND LOGIC DESIGN

Course Objectives:

• To provide fundamental concepts used in the design of digital systems and learn the methods for the design of digital circuits.

Course Outcomes:

- To introduce basic postulates of Boolean algebra and the methods for simplifying Boolean expressions
- To illustrate the concepts and study the procedures for the analysis and design of combinational circuits and sequential circuits
- To introduce the concepts of programmable logic devices.

UNITI

Number System & Boolean Algebra:

Digital Systems, Binary Numbers, Number base conversions, Complements of numbers, Signed binary numbers, Binary codes.

Boolean Algebra-Basic definition, Basic theorems and properties, Boolean Functions, Canonical & Standard forms, other logic operations & Logic gates.

IINIT II

Gate Level Minimization:

The map method, four variable & Five variable K-map, POS & SOP Simplification, Don't care conditions, NAND & NOR Implementation, Other two level Implementation, Ex-or Function, Tabular Method- Simplification of Boolean function using tabulation Method.

UNIT III

Combinational Logic Circuits:

Combinational circuits, Analysis & Design procedure, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude comparator, Decoder, Encoders, Multiplexers.

UNIT IV

Sequential Logic Circuits:

Sequential Circuits, Latches, Flips-Flops - RS, JK, Master-Slave JK, D & T flip flops, Analysis of Clocked sequential circuits, State Reduction & Assignment, Design procedure, Registers & Counters – Registers, Shift Registers, Ripple Counters, Synchronous counters, asynchronous counters.

Asynchronous sequential circuits - Introduction, Analysis Procedure, Design Procedure, Reduction of State flow tables, Race-free State Assignment, Hazards.

UNIT V

Programmable Devices:

Memory organization, classification of semiconductor memories, ROM, PROM, DROM, EPROM, EEPROM, RAM, expansion of memory, CCD, Flash memories, content addressable memory, programmable logic devices, PROM at PLD, programmable logic array (PLA) programmable array logic (PAL), field programmable gate array (FPGA).

Text Books:

- 1. M.Morris Mano & Michel D. Ciletti, "Digital Design", 5th Edition Pearson.
- 2. Zvi Kohavi and Nirah K.Jha, "Switching theory and Finite Automata Theory", 3rd Edition Cambridge.

References:

- 1. Subratha Goshal, "Digital Electronics", Cambridge
- 2. Comer, "Digital & State Machine Design", Third Indian edition, OXFORD

B. Tech II-I Sem. (ECE) L T P C 3 1 0 3

(15A04303) SIGNALS AND SYSTEMS

Course objectives:

- To study about signals and systems.
- To do analysis of signals & systems (continuous and discrete) using time domain & frequency domain methods.
- To understand the stability of systems through the concept of ROC.
- To know various transform techniques in the analysis of signals and systems.

Learning Outcomes:

- For integro-differential equations, the students will have the knowledge to make use of Laplace transforms.
- For continuous time signals the students will make use of Fourier transform and Fourier series.
- For discrete time signals the students will make use of Z transforms.
- The concept of convolution is useful for analysis in the areas of linear systems and communication theory.

UNITI

SIGNALS & SYSTEMS: Definition and classification of Signal and Systems (Continuous time and Discrete time), Elementary signals such as Dirac delta, unit step, ramp, sinusoidal and exponential and operations on signals. Analogy between vectors and signals-orthogonality-Mean Square error-Fourier series: Trigonometric & Exponential and concept of discrete spectrum

UNIT II

CONTINUOUS TIME FOURIER TRANSFORM: Definition, Computation and properties of Fourier Transform for different types of signals. Statement and proof of sampling theorem of low pass signals

UNIT III

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS: Linear system, impulse response, Response of a linear system, linear time-invariant (LTI) system, linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, Relationship between bandwidth and rise time. Energy and Power Spectral Densities

UNIT IV

DISCRETE TIME FOURIER TRANSFORM: Definition, Computation and properties of Fourier Transform for different types of signals.

UNIT V

LAPLACE TRANSFORM: Definition-ROC-Properties-Inverse Laplace transformsthe S-plane and BIBO stability-Transfer functions-System Response to standard signals-Solution of differential equations with initial conditions.

The Z-TRANSFORM: Derivation and definition-ROC-Properties-Linearity, time shifting, change of scale, Z-domain differentiation, differencing, accumulation, convolution in discrete time, initial and final value theorems-Poles and Zeros in Z-plane-The inverse Z-Transform-System analysis-Transfer function-BIBO stability-System Response to standard signals-Solution of difference equations with initial conditions.

TEXT BOOKS:

- 1. B. P. Lathi, "Linear Systems and Signals", Second Edition, Oxford University press,
- A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", Pearson, 2nd Edn.
- 3. A. Ramakrishna Rao, "Signals and Systems", 2008, TMH.

REFERENCES:

- 1. Simon Haykin and Van Veen, "Signals & Systems", Wiley, 2nd Edition.
- 2. B.P. Lathi, "Signals, Systems & Communications", 2009, BS Publications.
- 3. Michel J. Robert, "Fundamentals of Signals and Systems", MGH International Edition, 2008.
- 4. C. L. Philips, J. M. Parr and Eve A. Riskin, "Signals, Systems and Transforms", Pearson education.3rd

B. Tech II-I Sem. (ECE)

L T P C

(15A04304) PROBABILITY THEORY & STOCHASTIC PROCESSES

Course Objectives:

- To understand the concepts of a Random Variable and operations that may be performed on a single Random variable.
- To understand the concepts of Multiple Random Variables and operations that may be performed on Multiple Random variables.
- To understand the concepts of Random Process and Temporal & Spectral characteristics of Random Processes.

Learning Outcomes:

 A student will able to determine the temporal and spectral characteristics of random signal response of a given linear system.

UNIT-I

Probability: Probability introduced through Sets and Relative Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample Spaces, Events, Probability Definitions and Axioms, Mathematical Model of Experiments, Probability as a Relative Frequency, Joint Probability, Conditional Probability, Total Probability, Bays' Theorem, Independent Events:

The Random Variable : Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete and Continuous, Mixed Random Variable, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Raleigh, Conditional Distribution, Methods of defining Conditioning Event, Conditional Density, Properties.

UNIT-II

Multiple Random Variables: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem, (Proof not expected). Unequal Distribution, Equal Distributions.

Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variable case, Properties, Transformations of Multiple Random Variables. Linear Transformations of Gaussian Random Variables.

UNIT-III

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Processes.

UNIT-IV

Random Processes – **Spectral Characteristics:**The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, the Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function

UNIT-V

Linear Systems with Random Inputs:Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties.

Text Books:

- Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", TMH, 4th Edition, 2001.
- 2. Athanasios Papoulis and S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", PHI, 4th Edition, 2002.

References:

- R.P. Singh and S.D. Sapre, "Communication Systems Analog & Digital", TMH, 1995.
- 2. Henry Stark and John W.Woods, "Probability and Random Processes with Application to Signal Processing", Pearson Education, 3rd Edition.
- 3. George R. Cooper, Clave D. MC Gillem, "Probability Methods of Signal and System Analysis", Oxford, 3rd Edition, 1999.
- S.P. Eugene Xavier, "Statistical Theory of Communication", New Age Publications, 2003.
- 5. B.P. Lathi, "Signals, Systems & Communications", B.S. Publications, 2003.

B. Tech II-I Sem. (ECE)

L T P C

(15A02306) ELECTRICAL TECHNOLOGY

Objective:

Electrical Technology contains Single phase transformers, Induction motors, Synchronous Machines, DC generators and motors. The objective is to study their performance aspects.

UNIT- I DC GENERATORS

D.C. Generators – Principle of Operation – Constructional Features – E. M.F Equation–Numerical Problems – Methods of Excitation – Separately Excited and Self Excited Generators – Build-Up of E.M.F - Critical Field Resistance and Critical Speed - Load Characteristics of Shunt, Series and Compound Generators- Applications

UNIT – II D.C. MOTORS

D.C Motors – Principle of Operation – Back E.M.F. –Torque Equation – Characteristics and Application of Shunt, Series and Compound Motors-Speed Control of D.C. Motors: Armature Voltage and Field Flux Control Methods. Three Point Starter-Losses – Constant & Variable Losses – Calculation of Efficiency - Swinburne's Test.

UNIT-III SINGLE PHASE TRANSFORMERS

Single Phase Transformers - Constructional Details- Emf Equation - Operation on No Load and on Load - Phasor Diagrams-Equivalent Circuit - Losses and Efficiency-Regulation-OC and SC Tests - Sumpner's Test - Predetermination of Efficiency and Regulation.

UNIT-IV 3-PHASE INDUCTION MOTORS

Polyphase Induction Motors-Construction Details of Cage and Wound Rotor Machines-- Principle of Operation – Slip- Rotor Emf and Rotor Frequency - Torque Equation-Torque Slip Characteristics.

UNIT – V SYNCHRONOUS MACHINES

Principle And Constructional Features of Salient Pole and Round Rotor Machines – E.M.F Equation- Voltage Regulation by Synchronous Impedance Method- Theory of Operation of Synchronous Motor.

OUTCOME:

After going through this course the student acquires knowledge on basics of DC generators and motors, Transformers, Induction motors and Synchronous Machines.

TEXT BOOKS:

- 1. Basic Electrical Engineering, V. N. Mittle and Arvind Mittle, Mc Graw Hill (India) Pvt. Ltd., 2nd Edition, 2005.
- 2. Basic Electrical Engineering, T.K.Nagsarkar and M.S. Sukhija, Oxford University Press, 2nd Edition, 2011.

REFERENCES:

- 1. Basic Electrical Engineering, M.S.Naidu and S. Kamakshiah, Tata Mc Graw Hill, 3rd Edition, 2009.
- 2. Electrical and Electronic Technology, Hughes, Pearson Education.

B. Tech II-I Sem. (ECE)

(15A04305) ELECTRONIC DEVICES AND CIRCUITS LABORATORY

Objectives:

• This Lab provides the students to get an electrical model for various semiconductor devices. Students can find and plot V_I characteristics of all semiconductor devices. Student learns the practical applications of the devices. They can learn and implement the concept of the feedback and frequency response of the small signal amplifier

Outcomes:

 Students able to learn electrical model for various semiconductor devices and learns the practical applications of the semiconductor devices

PART A: Electronic Workshop Practice

- Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
- Identification, Specifications and Testing of active devices, Diodes,
 BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passive components.
- Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO.

PART B: List of Experiments

(For Laboratory Examination-Minimum of Ten Experiments)

1. P-N Junction Diode Characteristics

Part A: Germanium Diode (Forward bias & Reverse bias)

Part B: Silicon Diode (Forward bias only)

2. Zener Diode Characteristics

Part A: V-I Characteristics

Part B: Zener Diode act as a Voltage Regulator

3. Rectifiers (without and with c-filter)

Part A: Half-wave Rectifier

Part B: Full-wave Rectifier

4. BJT Characteristics(CE Configuration)

Part A: Input Characteristics

Part B: Output Characteristics

5. FET Characteristics(CS Configuration)

Part A: Drain (Output) Characteristics

Part B: Transfer Characteristics

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurements
- 10. BJT-CE Amplifier
- 11. Emitter Follower-CC Amplifier
- 12. FET-CS Amplifier

PART C:Equipment required for Laboratory

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters
- Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)
- 9. Active & Passive Electronic Components
- 10. Bread Boards
- 11. Connecting Wires
- 12. CRO Probes etc.

B. Tech II-I Sem. (ECE)

(15A02307) ELECTRICAL TECHNOLOGY AND BASIC SIMULATION LABORATORY

PART-A

- Magnetization Characteristics of D.C.Shunt Generator. Determination of Critical Field Resistance.
- 2. Swinburne's Test on DC Shunt Machine (Predetermination of Efficiency of a Given DC Shunt Machine Working as Motor and Generator).
- Brake Test on DC Shunt Motor. Determination of Performance Characteristics.
- 4. OC & SC Tests on Single-Phase Transformer (Predetermination of Efficiency and Regulation at Given Power Factors and Determination of Equivalent Circuit).
- 5. Load Test on Single Phase Transformer.

PART-B

List of Experiments:

- Generation of Various signals and Sequences (Periodic and Aperiodic), Such as Unit Impulse, Unit Step, Square, Saw Tooth, Triangular, Sinusoidal, Ramp, Sinc.
- 2. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 3. Convolution between Signals and Sequences.
- 4. Autocorrelation and Cross correlation between Signals and Sequences.
- 5. Verification of Linearity and Time Invariance Properties of a Given Continuous / Discrete System.
- Finding the Fourier Transform of a given Signal and plotting its Magnitude and Phase Spectrum.
- 7. Waveform Synthesis using Laplace Transform.
- Generation of Gaussian Noise (Real and Complex), Computation of its Mean, M.S.Values and its Skew, Kurtosis, and PSD, Probability Distribution Function.
- 9. Sampling Theorem Verification.
- 10. Removal of Noise by Auto Correlation / Cross correlation in a given signal corrupted by noise.

- 11. Impulse response of a raised cosine filter.
- 12. Checking a Random Process for Stationary in Wide Sense.

Note: All five (5) Experiments from part-A and any Eight (8) Experiments from Part-B are to be conducted.

B. Tech II-II Sem. (ECE)

L T P C 3 1 0 3

(15A54402) MATHEMATICS -IV

(Common to ECE, EEE)

OBJECTIVES:

To enable the students to understand the mathematical concepts of special functions & complex variables and their applications in science and engineering.

OUTCOMES:

The student achieves the knowledge to analyse the problems using the methods of special functions and complex variables

UNIT – I:

Special Functions: Gamma and Beta Functions – their properties – Evaluation of improper integrals. Series Solutions of ordinary differential equations (Power series and Frobenius Method).

UNIT - II:

Bessel functions – Properties – Recurrence relations – Orthogonality. Legendre polynomials – Properties – Rodrigue's formula – Recurrence relations – Orthogonality.

UNIT – III

Functions of a complex variable – Continuity – Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate harmonic functions – Milne – Thomson method. Conformal mapping: Transformation of ez, Inz, z2, Sin z, cos z, Bilinear transformation - Translation, rotation, magnification and inversion – Fixed point – Cross ratio – Determination of bilinear transformation.

UNIT - IV

Complex integration: Line integral — Evaluation along a path and by indefinite integration — Cauchy's integral theorem — Cauchy's integral formula — Generalized integral formula. Complex power series: Radius of convergence — Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point — Isolated singular point — Pole of order m — Essential singularity.

UNIT – V

Residue – Evaluation of residue by formula and by Laurent's series – Residue theorem. Evaluation of integrals of the type

(a) Improper real integrals $\int_{-\infty}^{\infty} f(x)dx$ (b) $\int_{-\infty}^{\infty} f(x)dx$ (c)

TEXT BOOKS:

- 1. Higher Engineering Mathematics, B.S. Grewal, Khanna publishers.
- 2.Engineering Mathematics, Volume III, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher

REFERENCES:

- 1. Mathematics III by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S.Chand publications.
- 2. Advanced Engineering Mathematics, Peter V.O'Neil, CENGAGE publisher.
- 3. Advanced Engineering Mathematics by M.C. Potter, J.L. Goldberg, Edward F.Aboufadel, Oxford.

B. Tech II-II Sem. (ECE)

LTPC

(15A04401) ELECTRONIC CIRCUIT ANALYSIS

Course Objectives:

The aim of this course is to familiarize the student with the analysis and design of multistage amplifiers with compound connections, feedback amplifiers, oscillators, power amplifiers and tuned amplifiers. To study and analyze the frequency response of amplifier circuits.

Course Outcomes:

Upon completion of this course, student will be able to:

- Analyze the frequency response of the BJT amplifiers at low and high frequencies.
- Analyze and design multistage amplifiers with compound connections, feedback amplifiers, oscillators, power amplifiers and tuned amplifiers.

UNIT -I

Feedback Amplifiers : Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of Analysis of Feedback Amplifiers.

Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phase shift and Wein bridge oscillators with BJT and FET with the relevant analysis, Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators with BJT and FET with relevant analysis, Crystal oscillators, Frequency and amplitude stability of oscillators.

UNIT- II

Small Signal High Frequency Transistor Amplifier models:

BJT: Transistor at High Frequencies, Hybrid- π Common Emitter transistor model, Hybrid π conductances, Hybrid π capacitances, Validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters , CE short circuit current gain, Current gain with resistive load, Cut-off frequencies, Frequency Response and Gain Bandwidth product.

FET: Analysis of Common Source and Common Drain Amplifier circuits at High frequencies.

UNIT - III

Multistage Amplifiers: Classification ofamplifiers, Methods of coupling, Cascaded transistor amplifier and its analysis, Analysis of two stage RC coupled amplifier, High input resistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Analysis of multi stage amplifiers using FET, Differential amplifier using BJT.

UNIT-IV

Power Amplifiers: Class A large signal Amplifiers, Second harmonic Distortions, Higher order harmonic Distortion, Transformer Coupled Audio power amplifier, Efficiency, Push-pull amplifiers, Class B Amplifiers, Class AB operation, Efficiency of Class B Amplifier, Complementary Symmetry push pull amplifier, Class D amplifier, Class S amplifier, MOSFET power amplifier, Thermal stability and Heat sink.

UNIT-V

Tuned Amplifiers: Introduction, Q-Factor, Small Signal Tuned Amplifier – Capacitance single tuned amplifier, Double Tuned Amplifiers, Effect of Cascading Single tuned amplifiers on Band width, Effect of Cascading Double tuned amplifiers on Band width, Staggered tuned amplifiers, Stability of tuned amplifiers

Text Books:

- 1. J. Millman and C.C. Halkias, "Integrated Electronics", McGraw-Hill, 1972.
- 2. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw Hill.
- Salivahanan, N.Suressh Kumar, A. Vallavaraj, "Electronic Devices and Circuits", Tata McGraw Hill, Second Edition.

References:

- Robert T. Paynter, "Introductory Electronic Devices and Circuits", Pearson Education, 7th Edition
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th Edition, 2006.
- 3. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.

B. Tech II-II Sem. (ECE)

L T P C

(15A04402) ANALOG COMMUNICATION SYSTEMS

Course Objectives:

- To study the fundamental concept of the analog communication systems.
- To analyze various analog modulation and demodulation techniques.
- To know the working of various transmitters and receivers.
- To understand the influence of noise on the performance of analog communication systems, and to acquire the knowledge about information and capacity.

Learning Outcomes:

This course provides the foundational education in Analog Communication systems, and applications. The students are provided the learning experience through class room teaching and solving assignment & tutorial problems. At the end of course, students should be able to:

- Acquire knowledge on the basic concepts of Analog Communication Systems.
- Analyze the analog modulated and demodulated systems.
- Verify the effect of noise on the performance of communication systems.
- Know the fundamental concepts of information and capacity.

UNIT- I

Introduction: Elements of communication systems, Information, Messages and Signals, Modulation, Modulation Methods, Modulation Benefits and Applications.

Amplitude Modulation & Demodulation: Baseband and carrier communication, Amplitude Modulation (AM), Rectifier detector, Envelope detector, Double sideband suppressed carrier (DSB-SC) modulation & its demodulation, Switching modulators, Ring modulator, Balanced modulator, Frequency mixer, sideband and carrier power of AM, Generation of AM signals, Quadrature amplitude modulation (QAM), Single sideband (SSB) transmission, Time domain representation of SSB signals & their demodulation schemes (with carrier, and suppressed carrier), Generation of SSB signals, Vestigial sideband (VSB) modulator & demodulator, Illustrative Problems.

UNIT- II

Angle Modulation &Demodulation: Concept of instantaneous frequency, Generalized concept of angle modulation, Bandwidth of angle modulated waves – Narrow band frequency modulation (NBFM); and Wide band FM (WBFM), Phase modulation, Verification of Frequency modulation bandwidth relationship, Features of angle modulation, Generation of FM waves – Indirect method, Direct generation; Demodulation of FM, Bandpass limiter, Practical frequency demodulators, Small error analysis, Pre-emphasis, & De-emphasis filters, FM receiver, FM Capture Effect,. Carrier Acquisition- phased locked loop (PLL), Costas loop, Frequency division

multiplexing (FDM), and Super-heterodyne AM receiver, Illustrative Problems.

UNIT- III

Noise in Communication Systems: Types of noise, Time domain representation of narrowband noise, Filtered white noise, Quadrature representation of narrowband noise, Envelope of narrowband noise plus sine wave, Signal to noise ratio & probability of error, Noise equivalent bandwidth, Effective noise temperature, and Noise figure, Baseband systems with channel noise, Performance analysis (i.e. finding SNR expression) of AM, DSB-SC, SSB-SC, FM, PM in the presence of noise, Illustrative Problems.

UNIT-IV

Analog pulse modulation schemes: Pulse amplitude modulation – Natural sampling, flat top sampling and Pulse amplitude modulation (PAM) & demodulation, Pulse-Time Modulation – Pulse Duration and Pulse Position modulations, and demodulation schemes, PPM spectral analysis, Illustrative Problems.

Radio Receiver measurements: Sensitivity, Selectivity, and fidelity.

UNIT- V

Information & Channel Capacity: Introduction, Information content of message, Entropy, Entropy of symbols in long independent and dependent sequences, Entropy and information rate of Markoff sources, Shannon's encoding algorithm, Discrete communication channels, Rate of information over a discrete channel, Capacity of discrete memoryless channels, Discrete channels with memory, Shannon – Hartley theorem and its implications, Illustrative problems.

Text books:

- B. P. Lathi, "Modern Digital and Analog Communication Systems," Oxford Univ. press, 3rd Edition, 2006.
- Sham Shanmugam, "Digital and Analog Communication Systems", Wiley-India edition, 2006.
- 3. A. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010.

References:

- Simon Haykin, "Communication Systems", Wiley-India edition, 3rd edition, 2010.
- Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009.
- 3. R.E. Ziemer& W.H. Tranter, "Principles of Communication-Systems Modulation & Noise", Jaico Publishing House, 2001.
- 4. George Kennedy and Bernard Davis, "Electronics & Communication System", TMH, 2004.

B. Tech II-II Sem. (ECE)

L T P C

(15A04403) ELECTROMAGNETIC THEORY & TRANSMISSION LINES

LEARNING OUTCOMES:

This course provides the foundational education in static electromagnetic fields, and time varying electromagnetic waves. Through lecture, and out-of-class assignments, students are provided learning experiences that enable them to:

- a. Analyze and solve the problems of electric and magnetic fields that vary with three dimensional spatial co-ordinates as well as with time.
- b. Become proficient with analytical skills for understanding propagation of electromagnetic waves in different media.
- c. Understand the concept of transmission lines & their applications.
- d. Develop technical & writing skills important for effective communication.
- e. Acquire team-work skills for working effectively in groups.

UNIT-I

Electrostatics: Review of Vector algebra, Co-ordinate systems & transformation, Vector calculus, Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Electric dipole, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

UNIT-II

Magnetostatics: Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic torque and moment, Magnetic dipole, Inductances and Magnetic Energy, Illustrative Problems.

UNIT-III

Maxwell's Equations (for Time Varying Fields): Faraday's Law and Transformer e.m.f, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements. Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems

UNIT-IV

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization,Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a Plane Conductor, Illustrative Problems.

UNIT-V

Transmission Lines: Types, Transmission line parameters (Primary and Secondary), Transmission line equations, Input impedance, Standing wave ratio & power, Smith chart & its applications, Applications of transmission lines of various lengths, Microstrip transmission lines – input impedance, Illustrative Problems.

TEXT BOOKS:

- Matthew N.O. Sadiku, "Elements of Electromagnetics," Oxford Univ. Press, 4th ed., 2008.
- 2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics," TMH, 7th ed., 2006.

REFERENCES:

- Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Ed., 2000.
- 2. Electromagnetics John D. Krauss, McGraw- Hill publications, 3rd ed., 1988.
- John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.
- 4. Schaum's out lines, "Electromagnetics," Second Edition, Tata McGraw-Hill publications, 2006.
- G. S. N. Raju, "Electromagnetic Field Theory and Transmission Lines," Pearson Education, 2013
- N. NarayanaRao, "Fundamentals of Electromagnetics for Engineering," Pearson Edu. 2009.

B. Tech II-II Sem. (ECE)

L T P C 3 1 0 3

(15A05201) DATA STRUCTURES

Objectives:

Understand different Data Structures Understand Searching and Sorting techniques

Unit-1

Introduction and overview: Asymptotic Notations, One Dimensional array- Multi Dimensional array- pointer arrays.

Linked lists: Definition- Single linked list- Circular linked list- Double linked list-Circular Double linked list- Application of linked lists.

Unit-2

Stacks: Introduction-Definition-Representation of Stack-Operations on Stacks-Applications of Stacks.

Queues: Introduction, Definition- Representations of Queues- Various Queue Structures- Applications of Queues. Tables: Hash tables.

Unit-3

Trees: Basic Terminologies- Definition and Concepts- Representations of Binary Tree-Operation on a Binary Tree- Types of Binary Trees-Binary Search Tree, Heap Trees, Height Balanced Trees, B. Trees, Red Black Trees.

Graphs: Introduction- Graph terminologies- Representation of graphs- Operations on Graphs- Application of Graph Structures: Shortest path problem- topological sorting.

Unit-4

Sorting: Sorting Techniques- Sorting by Insertion: Straight Insertion sort- List insertion sort- Binary insertion sort- Sorting by selection: Straight selection sort- Heap Sort-Sorting by Exchange- Bubble Sort- Shell Sort-Quick Sort-External Sorts: Merging Order Files-Merging Unorder Files- Sorting Process.

Unit-5

Searching: List Searches- Sequential Search- Variations on Sequential Searches- Binary Search- Analyzing Search Algorithm- Hashed List Searches- Basic Concepts- Hashing Methods- Collision Resolutions- Open Addressing- Linked List Collision Resolution-Bucket Hashing.

Text Books:

- 1. "Classic Data Structures", Second Edition by Debasis Samanta, PHI.
- 2. "Data Structures A Pseudo code Approach with C", Second Edition by

Richard F. Gilberg, Behrouz A. Forouzan, Cengage Learning.

Reference Books:

- 1. Fundamentals of Data Structures in C Horowitz, Sahni, Anderson-Freed, Universities Press, Second Edition.
- 2. Schaum' Outlines Data Structures Seymour Lipschutz McGrawHill-Revised First Edition.
- 3. Data structures and Algorithms using C++, Ananda Rao Akepogu and Radhika Raju Palagiri, Pearson Education.

B. Tech II-II Sem. (ECE)

LTPC

(15A02303) CONTROL SYSTEMS ENGINEERING

OBJECTIVES:

To make the students learn about:

- Merits and demerits of open loop and closed loop systems; the effects of feedback
- The use of block diagram algebra and Mason's gain formula to find the effective transfer function between two nodes
- Transient and steady state responses, time domain specifications
- The concept of Root loci
- Frequency domain specifications, Bode diagrams and Nyquist plots
- The fundamental aspects of modern control

UNIT - I INTRODUCTION

Open Loop and closed loop control systems and their differences- Examples of control systems- Classification of control systems, Feedback Characteristics, Effects of positive and negative feedback. Mathematical models – Differential equations of Translational and Rotational mechanical systems, and Electrical Systems, Block diagram reduction methods – Signal flow graph - Reduction using Mason's gain formula. Transfer Function of DC Servo motor - AC Servo motor - Synchro transmitter and Receiver

UNIT-II TIME RESPONSE ANALYSIS

Step Response - Impulse Response - Time response of first order systems - Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications - Steady state response - Steady state errors and error constants

UNIT - III STABILITY

The concept of stability – Routh's stability criterion – Stability and conditional stability – limitations of Routh's stability. The root locus concept - construction of root locieffects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT – IV FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Stability Analysis from Bode Plots. Polar Plots-Nyquist Plots- Phase margin and Gain margin-Stability Analysis.

Compensation techniques – Lag, Lead, Lag-Lead Compensator design in frequency Domain.

UNIT – V STATE SPACE ANALYSIS

Concepts of state, state variables and state model, derivation of state models from differential equations. Transfer function models. Block diagrams. Diagonalization. Solving the Time invariant state Equations- State Transition Matrix and it's Properties. System response through State Space models. The concepts of controllability and observability.

OUTCOMES:

After completing the course, the student should be able to do the following:

- Evaluate the effective transfer function of a system from input to output using
 - (i) block diagram reduction techniques (ii) Mason's gain formula
- Compute the steady state errors and transient response characteristics for a given system and excitation
- Determine the absolute stability and relative stability of a system
- Draw root loci
- Design a compensator to accomplish desired performance
- Derive state space model of a given physical system and solve the state equation

TEXT BOOKS:

- 1. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.
- Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International Publishers, 5th edition, 2007, Reprint 2012.

REFERENCE BOOKS:

- Automatic Control Systems, Farid Golnaraghi and Benjamin. C. Kuo, WILEY, 9th Edition, 2010.
- 2. Control Systems, Dhanesh N. Manik, CENGAGE Learning, 2012.
- 3. John J D'Azzo and C. H. Houpis, "Linear Control System Analysis and Design: Conventional and Modern", McGraw Hill Book Company, 1988.

B. Tech II-II Sem. (ECE) L T P C 0 0 4 2

(15A04404) ELECTRONIC CIRCUIT ANALYSIS LABORATORY

Note: The students are required to design the electronic circuit and they have to perform the analysis through simulator using Multisim/Pspice/Equivalent Licensed simulation software tool. Further they are required to verify the result using necessary hardware in the hardware laboratory.

Objectives

- Help students make transition from analysis of electronic circuits to design of electronic circuits.
- To understand the Analysis of transistor at high frequencies.
- To understand the concept of designing of tuned amplifier.
- The student will construct and analyze voltage regulator circuits.
- To understand the circuit configuration and the principle operation of converters, including diode rectifiers, controlled AC-DC converters and DC choppers

Outcomes:

- The ability to analyze and design single and multistage amplifiers at low, mid and high frequencies.
- Designing and analyzing the transistor at high frequencies.
- Determine the efficiencies of power amplifiers.
- Determine Frequency response and design of tuned amplifiers.
- Able to Analyze all the circuits using simulation software and Hardware.

PART A: List of Experiments :(Minimum of Ten Experiments has to be performed)

- 1. Determination of f_T of a given transistor.
- 2. Voltage-Series Feedback Amplifier
- Current-Shunt Feedback Amplifier
- 4. RC Phase Shift/Wien Bridge Oscillator
- 5. Hartley/Colpitt's Oscillator
- 6. Two Stage RC Coupled Amplifier
- Darlington Pair Amplifier
- 8. Bootstrapped Emitter Follower

- 9. Class A Series-fed Power Amplifier
- 10. Transformer-coupled Class A Power Amplifier
- 11. Class B Push-Pull Power Amplifier
- 12. Complementary Symmetry Class B Push-Pull Power Amplifier
- 13. Single Tuned Voltage Amplifier
- 14. Double Tuned Voltage Amplifier

PART B: Equipment required for Laboratory

Software:

- i. Multisim/ Pspice/Equivalent Licensed simulation software tool
- ii. Computer Systems with required specifications

Hardware:

- 13. Regulated Power supplies
- 14. Analog/Digital Storage Oscilloscopes
- 15. Analog/Digital Function Generators
- 16. Digital Multimeters
- 17. Decade Résistance Boxes/Rheostats
- 18. Decade Capacitance Boxes
- 19. Ammeters (Analog or Digital)
- 20. Voltmeters (Analog or Digital)
- 21. Active & Passive Electronic Components
- 22. Bread Boards
- 23. Connecting Wires
- 24. CRO Probes etc.

B. Tech II-II Sem. (ECE)

(15A04405) ANALOG COMMUNICATION SYSTEMS LABORATORY

Course Outcomes:

After completion of the course the students will be able

- To experience real time behavior of different analog modulation schemes
- Technically visualize spectra of different analog modulation schemes
- Analyze practical behavior of different elements available in analog communication system such as filters, amplifiers etc.
- Measure characteristics of radio receiver and antenna measurements.

List of Experiments: (All Experiments are to be conducted)

- 1. Amplitude modulation and demodulation.
- Frequency modulation and demodulation. 2..
- a. Characteristics of Mixer.
 - b. Pre-emphasis & de-emphasis.
- 4. Pulse amplitude modulation & demodulation.
- 5. Pulse width modulation & demodulation
- Pulse position modulation & demodulation.
- Radio receiver measurements sensitivity selectivity and fidelity. 7.
- Measurement of half power beam width (HPBW) and gain of a half wave dipole antenna.
- Measurement of radiation pattern of a loop antenna in principal planes.

Equipment required for the Laboratory:

1.	Regulated Power Supply equipments	0 - 30 V	
2.	CROs		0 - 20 M Hz.
3.	Function Generators		0-3 M Hz
4.	RF Signal Generators		0 - 1000 M Hz
5.	Multimeters		
6.	Required electronic components (activ	ve and pass	sive) for the design of
	experiments from 1 - 7		
7.	Radio Receiver Demo kits or Trainers.		
8.	RF power meter		frequency range 0 -
	A ATT		

- 1000 MHz

Spectrum Analyzer

10. Dipole antennas (2 Nos.) 850 MHz – 1GHz

11. Loop antenna (1 no.) 850 MHz – 1GHz

B. Tech III-I Sem. (ECE) L T P C 3 1 0 3

15A04511 COMPUTER ORGANIZATION

Course Objectives:

- To understand the structure, function, characteristics and performance issues of computer systems.
- To understand I/O transfer mechanism, design of I/O circuit interfaces and example bus standards (like PCI, SCSI, USB)
- To understand the basic processing unit and how they are connected and how it generates control signals (using hardwired and micro programmed approaches)

Course Outcomes:

- Identify functional units, bus structure and addressing modes
- Design the hardwired and micro-programmed control units.
- Understand pipelined execution and instruction scheduling

UNIT-I

Computer types, Functional units, basic operational concepts, Bus structures, Data types, Software: Languages and Translators, Loaders, Linkers, Operating systems.

Memory locations – addresses and encoding of information – main memory operations – Instruction formats and instruction sequences – Addressing modes and instructions – Simple input programming – pushdown stacks – subroutines.

UNIT-II

Register transfer Language, Register transfer, Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro operations, shift Micro operations, Arithmetic Logic Shift Unit.

Stack organization, instruction formats, Addressing modes, Data transfer and manipulation, Execution of a complete instruction, Sequencing of control signals, Program Control.

UNIT-III

Control Memory, address Sequencing, Micro Program Example, Design of Control Unit.

Page 89

Addition and Subtraction, Multiplication Algorithms, Division Algorithms, Floating Point Arithmetic Operations, Decimal Arithmetic Unit, Decimal Arithmetic Operations.

UNIT-IV

Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor (IOP), Serial Communication.

Memory hierarchy, main memory, auxiliary memory, Associative memory, Cache memory, Virtual memory, Memory management hardware.

UNIT-V

Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors.

Characteristics of Multiprocessors, Interconnection Structures, Interprocessor Arbitration, Inter-processor Communication and Synchronization, Cache Coherence.

Text Books:

- M. Morris Mano, "Computer system Architecture", Prentice Hall of India (PHI), Third edition.
- 2. William Stallings, "Computer organization and programming", Prentice Hall of India(PHI) Seventh Edition, Pearson Education(PE) Third edition, 2006.

Reference Books:

- 1. Carl Hamacher, ZvonksVranesic, SafwatZaky, "Computer Organization" 5th Edition, McGraw Hill, 2002.
- 2. Andrew S.Tanenbaum, "Structured Computer Organization", 4th Edition PHI/Pearson
- 3. John L.Hennessy and David A.Patterson, "Computer Architecture a quantitative approach", Fourth Edition Elsevier
- 4. josephD.Dumas II, "Computer Architecture: Fundamentals and Principals of ComputerDesign", BS Publication.

B. Tech III-ISem. (ECE)

15A04501 ANTENNAS & WAVE PROPAGATION

Course Objectives:

- Fundamentals of electromagnetic radiation: Maxwell's equations, potential functions, wave equation, retarded potential, short current element, near and far fields, Poynting's theorem.
- Design of antenna arrays: principle of pattern multiplication, broadside and end fire arrays, array synthesis, coupling effects and mutual impedance, parasitic elements, Yagi-Uda antenna.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- Approximate parametric equations for the calculation in the farfield region.
- Write parametric integral expressions for a given current source.
- Calculate electromagnetic fields for a given vector potential.
- Discover pattern multiplication principle for array antennas.

UNIT - I

Antenna Basics & Dipole antennas:Introduction, Basic antenna parameters- patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective height, Fields from oscillating dipole, Field Zones, Shape-Impedance considerations, Polarization – Linear, Elliptical, & Circular polarizations, Antenna temperature, Antenna impedance, Front—to-back ratio, Antenna theorems, Radiation – Basic Maxwell's equations, Retarded potential-Helmholtz Theorem, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Field Components, Radiated power, Radiation Resistance, Beam width, Natural current distributions, far fields and patterns of Thin Linear Center-fed Antennas of different lengths, Illustrative problems.

UNIT- II

VHF, UHF and Microwave Antennas - I:Loop Antennas - Introduction, Small Loop, Comparison of far fields of small loop and short dipole, Radiation Resistances and Directives of small and large loops (Qualitative Treatment), Arrays with Parasitic Elements - Yagi - Uda Arrays, Folded Dipoles & their characteristics. Helical Antennas-

Helical Geometry, Helix modes, Practical Design considerations for Monofilar Helical Antenna in Axial and Normal Modes. Horn Antennas- Types, Fermat's Principle, Optimum Horns, Design considerations of Pyramidal Horns, Illustrative Problems.

UNIT - III

VHF, UHF and Microwave Antennas - II: Micro strip Antennas - Introduction, features, advantages and limitations, Rectangular patch antennas - Geometry and parameters, characteristics of Micro strip antennas, Impact of different parameters on characteristics, reflector antennas - Introduction, Flat sheet and corner reflectors, parabola reflectors - geometry, pattern characteristics, Feed Methods, Reflector Types - Related Features, Lens Antennas - Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications, Illustrative Problems.

UNIT- IV

Antenna Arrays: Point sources - Definition, Patterns, arrays of 2 Isotropic sources-Different cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison, BSA with Non-uniform Amplitude Distributions - General considerations and Bionomial Arrays, Illustrative problems.

Antenna Measurements: Introduction, Concepts- Reciprocity, Near and Far Fields, Coordination system, sources of errors, Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by comparison, Absolute and 3-Antenna Methods).

UNIT - V

Wave Propagation: Introduction, Definitions, Characterizations and general classifications, different modes of wave propagation, Ray/Mode concepts, Ground wave propagation (Qualitative treatment) - Introduction, Plane earth reflections, Space and surface waves, wave tilt, curved earth reflections, Space wave propagation - Introduction, field strength variation with distance and height, effect of earth's curvature, absorption, Super refraction, M-curves and duct propagation, scattering phenomena, tropospheric propagation, fading and path loss calculations, Sky wave propagation - Introduction, structure of lonosphere, refraction and reflection of sky waves by lonosphere, Ray path, Critical frequency, MUF, LUF, OF, Virtual height and Skip distance, Relation between MUF and Skip distance, Multi-HOP propagation, Energy loss in lonosphere, Summary of Wave Characteristics in different frequency ranges, Illustrative problems.

TEXT BOOKS:

- 1. John D. Kraus and Ronald J. Marhefka and Ahmad S.Khan, "Antennas and wave propagation," TMH, New Delhi, 4th Ed., (special Indian Edition), 2010.
- 2. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems," PHI, 2ndEdn, 2000.

REFERENCES:

- 1. C.A. Balanis, "Antenna Theory- Analysis and Design," John Wiley & Sons, 2ndEdn., 2001.
- 2. K.D. Prasad, SatyaPrakashan, "Antennas and Wave Propagation," Tech. India Publications, New Delhi, 2001.

B. Tech III-ISem. (ECE)

15A04502 **DIGITAL COMMUNICATION SYSTEMS**

Course Objectives:

- The students to be able to understand, analyze, and design fundamental digital communication systems.
- The course focuses on developing a thorough understanding of digital communication systems by using a series of specific examples and problems.

Course Outcomes:

After the completion of the course, student will be able to:

- Understand the elements of DCS & the fundamentals concepts of sampling theorem along with different coding and modulation techniques
- Understand the basic principles of baseband and passband digital modulation schemes
- Analyze probability of error performance of digital systems and are able to design digital communication systems

UNIT - I

Source Coding Systems: Introduction, sampling process, quantization, quantization noise, conditions for optimality of quantizer, encoding, Pulse-Code Modulation (PCM), Line codes, Differential encoding, Regeneration, Decoding & Filtering, Noise considerations in PCM systems, Time-Division Multiplexing (TDM), Synchronization, Delta modulation (DM), Differential PCM (DPCM), Processing gain, Adaptive DPCM (ADPCM), Comparison of the above systems.

UNIT - II

Baseband Pulse Transmission: Introduction, Matched filter, Properties of Matched filter, Matched filter for rectangular pulse, Error rate due to noise, Inter-symbol Interference (ISI), Nyquist's criterion for distortion less baseband binary transmission, ideal Nyquist channel, Raised cosine filter & its spectrum, Correlative coding – Duo binary & Modified duo binary signaling schemes, Partial response signaling, Baseband M-array PAM transmission, Eye diagrams.

UNIT - III

Signal Space Analysis: Introduction, Geometric representation of signals, Gram-Schmidt orthogonalization procedure, Conversion of the Continuous AWGN channel into a vector channel, Coherent detection of signals in noise, Correlation receiver, Equivalence of correlation and Matched filter receivers, Probability of error, Signal constellation diagram.

UNIT - IV

Passband Data Transmission: Introduction, Passband transmission model, Coherent phase-shift keying – binary phase shift keying (BPSK), Quadrature shift keying (QPSK), Binary Frequency shift keying (BFSK), Error probabilities of BPSK, QPSK, BFSK, Generation and detection of Coherent BPSK, QPSK, & BFSK, Power spectra of above mentioned modulated signals, M-array PSK, M-array quadrature amplitude modulation (M-array QAM), Non-coherent orthogonal modulation schemes -Differential PSK, Binary FSK, Generation and detection of non-coherent BFSK, DPSK, Comparison of power bandwidth requirements for all the above schemes.

UNIT - V

Channel Coding: Error Detection & Correction - Repetition & Parity Check Codes, Interleaving, Code Vectors and Hamming Distance, Forward Error Correction (FEC) Systems, Automatic Retransmission Query (ARQ) Systems, Linear Block Codes - Matrix Representation of Block Codes, Convolutional Codes - Convolutional Encoding, Decoding Methods.

TEXT BOOKS:

- 1. Simon Hakin, "Communication Systems," Wiley India Edition, 4th Edition, 2011.
- 2. B.P. Lathi, &Zhi Ding, "Modern Digital & Analog Communication Systems", Oxford University Press, International 4th edition, 2010.

REFERENCES:

- Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley, 2005.
- A. Bruce Carlson, & Paul B. Crilly, "Communication Systems An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010
- 3. Bernard Sklar, "Digital Communications", Prentice-Hall PTR, 2nd edition, 2001.
- Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009.
- 5. J. G. Proakis, M Salehi, Gerhard Bauch, "Modern Communication Systems Using MATLAB," CENGAGE, 3rd Edition, 2013.

B. Tech III-ISem. (ECE)

L T P C 3 1 0 3

15A04503 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

Course Objectives:

- Design of OPAMPS, Classification of OPAMPs.
- To study and design various linear applications of OPAMPs.
- To study and design various non linear applications of OPAMPs

Course Outcomes:

- Understand the basic building blocks of linear integrated circuits and its characteristics.
- Analyze the linear, non-linear and specialized applications of operational amplifiers.
- Understand the theory of ADC and DAC.
- Realize the importance of Operational Amplifier.

UNIT - I

Differential Amplifiers: Differential amplifier configurations, Balanced and unbalanced output differential amplifiers, current mirror, level Translator.

Operational amplifiers: Introduction, Block diagram, Ideal op-amp, Equivalent Circuit, Voltage Transfer curve, open loop op-amp configurations. Introduction to dual OP-AMP TL082 as a general purpose JFET-input Operational Amplifier.

UNIT-II

Introduction, feedback configurations, voltage series feedback, voltage shunt feedback and differential amplifiers, properties of Practical op-amp.

Frequency response: Introduction, compensating networks, frequency response of internally compensated op-amps and non compensated op-amps, High frequency op-amp equivalent circuit, open loop gain Vs frequency, closed loop frequency response, circuit stability, slew rate.

UNIT-III

DC and AC amplifiers, peaking amplifier, summing, scaling and averaging amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, integrator, differentiator, active filters, First, Second and Third order Butterworth filter and its frequency response, Tow-Thomas biquad filter.

UNIT-IV

Oscillators, Phase shift and wein bridge oscillators, Square, triangular and sawtooth wave generators, Comparators, zero crossing detector, Schmitt trigger, characteristics and limitations.

Specialized applications: 555 timer IC (monostable&astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications, analog multiplier and phase detection, Wide bandwidth precision analog multiplier MPY634 and its applications.

UNIT V

Analog and Digital Data Conversions, D/A converter – specifications – weighted resistor type, R-2R Ladder type, Voltage Mode and Current-Mode R - 2R Ladder types - switches for D/A converters, high speed sample-and-hold circuits, A/D Converters – specifications – Flash type – Successive Approximation type – Single Slope type – Dual Slope type – A/D Converter using Voltage-to-Time Conversion – Over-sampling A/D Converters,

TEXT BOOKS:

- D. Roy Chowdhury, "Linear Integrated Circuits", New Age International (p) Ltd, 2nd Edition, 2003.
- K.LalKishore, "Operational Amplifiers and Linear Integrated Circuits", Pearson Education. 2007.

REFERENCES:

- 1. Ramakanth A. Gayakwad, "Op-Amps & Linear ICs", PHI, 4th edition, 1987.
- 2. R.F.Coughlin& Fredrick Driscoll, "Operational Amplifiers & Linear Integrated Circuits", 6th Edition, PHI.
- 3. David A. Bell, "Operational Amplifiers & Linear ICs", Oxford University Press, 2nd edition, 2010.

B. Tech III-ISem. (ECE)

L T P (

15A04504 DIGITAL SYSTEM DESIGN

Course Objectives:

- To be able to use computer-aided design tools for development of complex digital logic circuits
- To be able to model, simulate, verify, analyze, and synthesize with hardware description languages
- To be able to design and prototype with standard cell technology and programmable logic
- To be able to design tests for digital logic circuits, and design for testability

Course Outcomes:

- Capable of using Computer-aided design tools to model, simulate, verify, analyze, and synthesize complex digital logic circuits.
- Efficient designing of any Digital System using basic structure ICs.
- Able to design and prototype with standard cell technology and programmable logic.
- Apply design test for digital logic circuits, and design for testability.

UNIT-I

CMOS LOGIC: Introduction to logic families, CMOS logic, CMOS logic families;BIPOLAR LOGIC AND INTERFACING: Bipolar logic, Transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic, Comparison of logic families, Familiarity with standard 74-series and CMOS 40- series-ICs – Specifications.

UNIT-II

HARDWARE DESCRIPTION LANGUAGES: HDL Based Digital Design, The VHDL Hardware Description Language—Program Structure, Types, Constants and Arrays, Functions and procedures, Libraries and Packages, Structural design elements, Dataflow design elements, Behavioral design elements, The Time Dimension, Simulation, Test Benches, VHDL Features for Sequential Logic Design, Synthesis

UNIT-III

COMBINATIONAL LOGIC DESIGN PRACTICES: Description of basic structures like Decoders, Encoders, Comparators, Multiplexers (74 –series MSI); Design of complex Combinational circuits using the basic structures; Designing Using combinational PLDs like PLAs, PALs ,PROMs CMOS PLDs; Adders & sub tractors, ALUs, Combinational multipliers; VHDL models for the above standard building block ICs.

UNIT-IV

SEQUENTIAL MACHINE DESIGN PRACTICES: Review of design of State machines; Standard building block ICs for Shift registers, parallel / serial conversion, shift register counters, Ring counters; Johnson counters, LFSR counter; VHDL models for the above standard building block ICs. Synchronous Design example using standard ICs

UNIT -V

Design Examples (using VHDL): Barrel shifter, comparators, floating-point encoder, and dual parity encoder.

Sequential logic Design: Latches & flip flops, PLDs, counters, shift register and their VHDL models.

Text Books:

- John F.Wakerly ,"Digital Design Principles and Practices" 4th edition, Pearson Education., 2009
- 2. Charles H.Roth,Jr., "Fundamentals of Logic Design" 5th edition , CENGAGE Learning 2012.

References:

- M.Morris Mano and Michael D. Cilleti., "Digital Logic Design" 4th edition Pearson Education., 2013
- 2. Stephen Brown and ZvonkoVranesic, "Fundamentals of digital logic with VHDL design" 2nd edition McGraw Hill Higher Education.
- 3. J. Bhasker, "A VHDL PRIMER" 3rd edition Eastern Economy Edition, PHI Learning,2010.

B. Tech III-I Sem. (ECE)

L T P (

15A04505 LINUX PROGRAMMING & SCRIPTING (MOOCS-I)

Course Objectives:

- The goal of the course is the study of scripting languages such as PERL, TCL/TK, Python and BASH
- Creation of programs in the Linux environment
- The study of the principles of scripting languages
- The study of usage of scripting languages in IC design flow

Learning Outcomes:

- Ability to create and run scripts using Perl / TCL / Python in IC design flow
- Ability to use Linux environment and write programs for automation of scripts in VLSI tool design flow

UNIT I

LINUX BASICS: Introduction to Linux, File System of the Linux, General usage of Linux kernel & basic commands, Linux users and group, Permissions for file, directory and users, Searching a file & directory, zipping and unzipping concepts

UNIT II

LINUX NETWORKING: Introduction to Networking in Linux, Network basics & tools, File transfer protocol in Linux, Network file system, Domain Naming Services, Dynamic hosting configuration Protocol & Network information Services.

UNIT III

PERL SCRIPTING: Introduction to Perl Scripting ,Working with Simple Values, Lists and Hashes, Loops and Decisions, Regular Expressions, Files and Data in Perl Scripting ,References &Subroutines , Running and Debugging Perl, Modules, Object-Oriented Perl.

UNIT IV

TCL/ TK SCRIPTING: TCL Fundamentals, String and Pattern Matching, TCL Data Structures ,Control Flow Commands, Procedures and Scope , EVEL, Working With UNIX, Reflection and Debugging, Script Libraries, TK Fundamentals ,TK by Examples, The Pack Geometry Manager, Binding Commands to X Events, Buttons and Menus, Simple TK Widgets, Entry and List box Widgets Focus, Grabs and Dialogs

UNIT V

PYTHON SCRIPTING: Introduction to Python, Using the Python Interpreter, More Control Flow Tools, Data Structures, Modules, Input and Output, Errors and Exceptions, Classes, Brief Tour of the Standard Library.

Text Books:

- 1. Instructor reference material
- 2. Python Tutorial by Guido van Rossum, and Fred L. Drake, Jr., editor, Release 2.6.4
- 3. Practical Programming in Tcl and Tk by Brent Welch , Updated for Tcl 7.4 and Tk 4.0 $\,$
- 4. Teach Yourself Perl 5 in 21 days by David Till.

Red Hat Enterprise Linux 4: System Administration Guide Copyright © 2005 Red Hat, Inc

B. Tech III-ISem. (ECE)

L T P (

15A04506 MEMS & MICRO SYSTEMS (MOOCS-I)

UNIT I

Introduction:Introduction to MEMS & Microsystems, Introduction to Microsensors, Evaluation of MEMS, Microsensors, Market Survey, Application of MEMS, MEMS Materials, MEMS Materials Properties, MEMS Materials Properties.

UNIT II

Microelectronic Technology for MEMS: Microelectronic Technology for MEMS, Micromachining Technology for MEMS, Micromachining Process, Etch Stop Techniques and Microstructure, Surface and Quartz Micromachining, Fabrication of Micromachined Microstructure, Microstereolithography,

UNIT III

Micro Sensors: MEMS Microsensors, ThermalMicrosensors, Mechanical MicromachinedMicrosensors, MEMS Pressure Sensor, MEMS Flow Sensor, Micromachined Flow Sensors, MEMS Inertial Sensors, MEMS Gyro Sensor

UNIT IV

MEMS Accelerometers: Micromachined Micro accelerometers for MEMS, MEMS Accelerometers for Avionics, Temperature Drift and Damping Analysis, Piezoresistive Accelerometer Technology, MEMS Capacitive Accelerometer, MEMS Capacitive Accelerometer Process, MEMS for Space Application.

UNIT V

MEMS Applications: Polymer MEMS & Carbon Nano Tubes CNT, Wafer Bonding & Packaging of MEMS, Interface Electronics for MEMS, Introduction to BioMEMS and Micro Fluidics, Introduction to Bio Nano Technology, Bio Sensors, Fluidics, MEMS for Biomedical Applications (Bio-MEMS)

Text Books:

- NadimMalufKirt Williams "An Introduction to Microelectromechanical Systems Engineering", Second Edition, Artech House, Inc. Boston London, International Standard Book Number: 1-58053-590-9.
- Varadan, V KandVaradan "Microsensors, actuators, MEMS, and electronics for smart structures" Rai-Choudhury P (ed.) Handbook of Microlithography, Micromachining, and Microfabrication, SPIE OpticalEngineeringPress

B. Tech III-ISem. (ECE)

L T P (

15A04507 IC APPLICATIONS LABORATORY

All experiments are based upon 741 / TL 082/ASLK Kits.

1. Study the characteristics of negative feedback amplifier

Aim: Design the following amplifiers:

- a) A unity gain amplifier
- b) A non-inverting amplifier with a gain of 'A'
- c) An inverting amplifier with a gain of 'A'

Apply a square wave of fixed amplitude and study the effect of slew rate on the three type of amplifiers.

Applications:

- Amplifying bioelectric potentials (ECG, EEG, EMG, EOG) and piezoelectric with high output impedance.
- Amplifying sensor output signals (temperature sensors, humidity sensors, pressure sensors etc.)

Sample questions

Explain the need for two stages in any instrumentation amplifier.

Why CMRR is high for instrumentation amplifiers?

Give some examples for low voltage, low frequency and higher output impedance signals.

How does the tolerances of resistors affect the gain of the instrumentation amplifier?

2. Design of an instrumentation amplifier

Aim:Design an instrumentation amplifier of a differential mode gain of 'A' using three amplifiers.

Applications:

- Used in measuring instruments designed for achieving high accuracy and high stability.
- Used for amplifying low voltage, low frequency and higher output impedance signals.

Sample questions

Explain the need for two stages in any instrumentation amplifier.

Why CMRR is high for instrumentation amplifiers?

Give some examples for low voltage, low frequency and higher output impedance signals.

How does the tolerances of resistors affect the gain of the instrumentation amplifier?

3. Study the characteristics of regenerative feedback system with extension to design an astablemultivibrator

Aim:Design and test an astablemultivibrator for a given frequency.

Applications

- It can be used in signal generators and generation of timing signals.
- It can be used in code generators and trigger circuits.

Sample question

Discuss the difference between a stable and bi-stable multivibrator.

Discuss the frequency limitation of astablemultivibrator.

Discuss the various applications of bi-stable multivibrator.

4. Study the characteristics of integrator circuit

Aim:Design and test the integrator for a given time constant.

Applications

- Used in function generators, PI/PID controllers.
- Used in analog computers, analog-to-digital converters and wave-shaping circuits.
- Used as a charge amplifier.

Sample questions

Compare the output with that of ideal integrator.

How will you design a differentiator and mention its drawback.

Discuss the limitation of the output voltage of the integrator.

How will you obtain drift compensation in an inverting integrator?

Design of Analog filters – I

Aim:Design a second order butterworth band-pass filter for the given higher and lower cut-off frequencies.

Applications:

- Used in signal conditioning circuits for processing audio signals.
- Used in measuring instruments.
- Used in radio receivers.

Sample questions

Discuss the effect of order of the filter on frequency response.

How will you vary Q factor of the frequency response.

Discuss the need for going to Sallen Key circuit.

Compare the performance of Butterworth filter with that of Chebyshev filter.

Design of Analog filters – II

Aim:Design and test a notch filter to eliminate the 50Hz power line frequency.

Applications

- Used for removing power supply interference.
- Used for removing spur in RF signals.

Sample questions

Explain the effect of supply frequency interference while amplifying sensor signals.

Suggest a method for adjusting the Q factor of the frequency response of notch filter.

What is the purpose of going for Twin T notch filter circuit?

Design of a self-tuned Filter

Aim: Design and test a high-Q Band pass self-tuned filter for a given center frequency. **Applications:**

Used in spectrum analyzers

Sample Question:

Discuss the effect of the harmonics when a square wave is applied to the filter Determine the lock range of the self-tuned filter

8. Design of a function generator

Aim: Design and test a function generator that can generate square wave and triangular wave output for a given frequency.

Applications:

- Used in testing, measuring instruments and radio receivers.
- Used for obtaining frequency response of devices and circuits.
- Used for testing and servicing of Electronic equipments.
- Used in Electronic musical instruments.
- Used for obtaining audiograms (Threshold of audibility Vs frequency)

Sample questions

Discuss typical specifications of a general purpose function generator.

How can you obtain reasonably accurate sine wave from triangular wave.

Discuss the reason for higher distortion in sine wave produced by function generators. What do you mean by Duty cycle and how can you vary the same in a function generator?

_ *************

9. Design of a Voltage Controlled Oscillator

Aim:Design and test voltage controlled oscillator for a given specification (voltage range and frequency range).

Applications:

- Used in Phase Lock Loop (PLL) circuits.
- Used in frequency modulation circuits.
- Used in Function generators
- Used in frequency Synthesizers of Communication equipments.

Sample Questions

Discuss the following characteristics of a voltage controlled Oscillator.

- i) Tuning range
- ii) Tuning gain and
- iii) Phase noise

Compare the performances VCO based Harmonic Oscillators and Relaxation Oscillators

What are the various methods adopted in controlling the frequency of oscillation in VCOs

Discuss any one method of obtaining FM demodulation using a VCO.

10. Design of a Phase Locked Loop(PLL)

Aim:Design and test a PLL to get locked to a given frequency 'f'. Measure the locking range of the system and also measure the change in phase of the output signal as input frequency is varied with in the lock range.

Applications:

- Used in tracking Band pass filter for Angle Modulated signals.
- Used in frequency divider and frequency multiplier circuits.
- Used as Amplifiers for Angle Modulated signals.
- Used in AM and FM Demodulators
- Used in Suppressed Carrier Recovery Circuits

Sample Questions:

Draw the block diagram of a PLL based divider and multiplier and explain the functions performed by each block.

Distinguish between Lock range and Capture Range, Explain the method of estimating the same for a given PLL circuit.

Discuss the differences between Analog Phase Lock Loop and Digital Phase Lock Loop.

11. Automatic Gain Control (AGC) Automatic Volume Control (AVC)

Aim:Design and test an AGC system for a given peak amplitude of sine-wave output.

Applications

- Used in AM Receivers
- Used as Voice Operated Gain Adjusting Device (VOGAD) in Radio Transmitters
- Used in Telephone speech Recorders
- Used in Radar Systems

Sample Questions

Explain clearly the need for AGC in AM Receivers.

Draw the block diagram of feedback and feed forward AGC systems and explain the functions of each block.

Discuss any one gain control mechanism present in biological systems.

How can you use AGC in a Received Signal Strength Indicator (RSSI)

12. Design of a low drop out regulator

Aim:Design and test a Low Dropout regulator using op-amps for a given voltage regulation characteristic and compare the characteristics with TPS7250 IC

Applications:

- Used in Power Supply of all Electronic Instruments and Equipment's
- Used as Reference Power Supply in Comparators
- Used in Emergency Power Supplies
- Used in Current Sources

Sample Questions

Distinguish between Load Regulation and Line Regulation.

Mention some of the other important parameters in selecting a LDO.

What is power supply rejection ratio (PSRR)?

13. DC-DC Converter

Aim: Design of a switched mode power supply that can provide a regulated output voltage for a given input range using the TPS40200 IC

Applications:

- Used is DSL/Cable Modems
- Used in Distributed Power Systems

Sample Questions

Discuss the effect of varying the input voltage for a fixed regulated output voltage over the duty cycle of PWM.

References:

- TL082: Data Sheet: http://www.ti.com/lit/ds/symlink/tl082.pdf
 Application Note: http://www.ti.com/lit/ds/symlink/tl082.pdf
- 2. MPY634: Data Sheet: http://www.ti.com/lit/ds/symlink/mpy634.pdf
 Application Note: http://www.ti.com/lit/ds/symlink/mpy634.pdf
- 3. ASLK Pro Manual: ASLK Manual

B. Tech III-ISem. (ECE)

15A04508

DIGITAL COMMUNICATIONS SYSTEMS LABORATORY

Course Outcomes:

 After completion of the course the students will be able to experience real time behavior of different digital modulation schemes and technically visualize spectra of different digital modulation schemes

Minimum of Ten experiments to be conducted (Five from each Part-A&B) HARDWARE EXPERIMENTS (PART – A)

- 1. Time division multiplexing.
- Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Differential phase shift keying.
- 7. QPSK modulation and demodulation.

SOFTWARE EXPERIMENTS (PART-B)

Modeling of Digital Communications using MATLAB

- 1. Sampling Theorem verification.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Frequency shift keying.
- Phase shift keying.
- 6. Differential phase shift keying.
- 7. QPSK modulation and demodulation.

Equipment required for Laboratories:

- 1. RPS 0 30 V 2. CROs - 0 – 20 M Hz
- 3. Function Generators 0 1 M Hz
- 4. RF Generators (3 Nos.) 0 1000 M Hz.
- Multimeters
- Lab Experimental kit for Pulse Code Modulation (Experiment No.3 of part A)
- 7. Required Electronic Components (Active and Passive) which include required ICs

- Arbitrary Wave form generators/ PNS generators 2 Nos. (to generate 8. digital data at required data rates)
 Licensed MATLAB software for 30 users with required tool boxes.
- 9.

B. Tech III-ISem. (ECE)

L T P C 2 0 2 0

15A99501 SOCIAL VALUES & ETHICS (AUDIT COURSE)

(Common to all Branches)

UNIT - I

Introduction and Basic Concepts of Society: Family and Society: Concept of family, community, PRIs and other community based organizations and society, growing up in the family – dynamics and impact, Human values, Gender Justice.

Channels of Youth Moments for National Building:NSS & NCC: History, philosophy, aims & objectives; Emblems, flags, mottos, songs, badge etc.; Organizational structure, roles and responsibilities of various NSS functionaries. Nehru Yuva Kendra (NYK): Activities – Socio Cultural and Sports.

UNIT - II

Activities of NSS, NCC, NYK:

Citizenship: Basic Features Constitution of India, Fundamental Rights and Fundamental Duties, Human Rights, Consumer awareness and the legal rights of the consumer, RTI.

Youth and Crime: Sociological and psychological Factors influencing youth crime, Peer Mentoring in preventing crimes, Awareness about Anti-Ragging, Cyber Crime and its prevention, Juvenile Justice

Social Harmony and National Integration: Indian history and culture, Role of youth in peace-building and conflict resolution, Role of youth in Nation building.

UNIT - III

Environment Issues: Environment conservation, enrichment and Sustainability, Climate change, Waste management, Natural resource management (Rain water harvesting, energy conservation, waste land development, soil conservations and afforestation).

Health, Hygiene & Sanitation: Definition, needs and scope of health education, Food and Nutrition, Safe drinking water, Sanitation, Swachh Bharat Abhiyan.

Disaster Management: Introduction to Disaster Management, classification of disasters, Role of youth in Disaster Management. Home Nursing, First Aid.

Civil/ Self Defense: Civil defense services, aims and objectives of civil defense, Need for self defense training – Teakwondo, Judo, karate etc.,

UNIT - IV

Gender Sensitization: Understanding Gender – Gender inequality – Role of Family, Society and State; Challenges – Declining Sex Ratio – Sexual Harassment – Domestic

Violence; Gender Equality – Initiatives of Government – Schemes, Law; Initiates of NGOs – Awareness, Movements;

UNIT - V

Physical Education: Games & Sports: Health and Recreation – Biolagical basis of Physical activity – benefiets of exercise – Physical, Psychological, Social; Physiology of Musucular Activity, Respiration, Blood Circulation.

Yoga: Basics of Yoga – Yoga Protocol, Postures, Asanas, Pranayama: Introduction of Kriyas, Bandhas and Mudras.

TEXT BOOKS:

- 1. NSS MANUAL
- SOCIETY AND ENVIRONMENT: A.S.Chauha, Jain Brothers Publications, 6th Edition, 2006
- 3. INDIAN SOCIAL PROBLEM: G.R.Madan, Asian Publisher House
- 4. INDIAN SOCIAL PROBLEM: Ram Ahuja, Rawat Publications
- 5. HUMAN SOCIETY: Kingsley Davis, Macmillan
- 6. SOCIETY: Mac Iver D Page, Macmillan
- 7. SOCIOLOGY THEMES AND PERSPECTIVES: Michael Honalambos, Oxford University Press
- 8. CONSTITUTION OF INDIA: D.D.Basu, Lexis Nexis Butterworth Publishers
- 9. National Youth Policy 2014 (available on www.yas.nic.in)
- 10. TOWARS A WORLD OF EQUALS: A.Suneetha, Uma Bhrugudanda, DuggiralaVasantha, Rama Melkote, VasudhaNagraj, Asma Rasheed, GoguShyamala, Deepa Streenivas and Susie Tharu
- 10. LIGHT ON YOGA: B.K.S. Iyengar, Penguin Random House Publishers

www.un.org

www.india.gov.in

www.yas.nic.in

http://www.who.int/countries/ind/en/

http://www.ndma.gov.in

http://ayush.gov.in/event/common-yoga-protocol-2016-0

B. Tech III-IISem. (ECE)

L T P C

15A52301 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

<u>Course Objectives:</u> The objective of this course is to equip the student with the basic inputs of Managerial Economics and Economic Environment of business and to impart analytical skills in helping them take sound financial decisions for achieving higher organizational productivity.

Unit I

INTRODUCTION TO MANAGERIAL ECONOMICS

Managerial Economics – Definition- Nature- Scope - Contemporary importance of Managerial Economics - Relationship of Managerial Economics with Financial Accounting and Management. **Demand Analysis**: Concept of Demand-Demand Function - Law of Demand - Elasticity of Demand- Significance - Types of Elasticity - Measurement of elasticity of demand - Demand Forecasting- factors governing demand forecasting- methods of demand forecasting.

UNIT II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Function- Least cost combination- Short-run and Long- run production function- Isoquants and Isocosts, MRTS - Cobb-Douglas production function - Laws of returns - Internal and External economies of scale - **Cost Analysis**: Cost concepts and cost behavior- Break-Even Analysis (BEA) -Determination of Break Even Point (Simple Problems)-Managerial significance and limitations of Break- Even Point.

UNIT III

INTRODUCTION TO MARKETS AND NEW ECONOMIC ENVIRONMENT

Market structures: Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition- Monopoly-Monopolistic Competition-Oligopoly-Price-Output Determination - Pricing Methods and Strategies-Forms of Business Organizations- Sole Proprietorship- Partnership - Joint Stock Companies - Public Sector Enterprises - New Economic Environment- Economic Liberalization - Privatization - Globalization.

UNIT IV

INTRODUCTION TO FINANCIAL ACCOUNTING AND ANALYSIS

Financial Accounting – Concept - Emerging need and Importance - Double-Entry Book Keeping- Journal - Ledger – Trial Balance - Financial Statements - Trading Account – Profit & Loss Account – Balance Sheet (with simple adjustments). Financial Analysis – Ratios – Liquidity, Leverage, Profitability, and Activity Ratios (simple problems).

UNIT V CAPITAL AND CAPITAL BUDGETING

Concept of Capital - Over and Undercapitalization - Remedial Measures - Sources of Shot term and Long term Capital - Estimating Working Capital Requirements - Capital Budgeting - Features of Capital Budgeting Proposals - Methods and Evaluation of Capital Budgeting Projects - Pay Back Method - Accounting Rate of Return (ARR) - Net Present Value (NPV) - Internal Rate Return (IRR) Method (simple problems)

<u>Learning Outcome</u>: After completion of this course, the student will able to understand various aspects of Managerial Economics and analysis of financial statements and inputs therein will help them to make sound and effective decisions under different economic environment and market situations.

TEXT BOOKS:

- 1. Managerial Economics 3/e, Ahuja H.L, S.Chand, 2013.
- 2. Financial Management, I.M.Pandey, Vikas Publications, 2013.

REFERENCES

- 1. Managerial Economics and Financial Analysis, 1/e, Aryasri, TMH, 2013.
- Managerial Economics and Financial Analysis, S.A. Siddiqui and A.S. Siddiqui, New Age International, 2013.
- 3. Accounting and Financial Management, T.S.Reddy& Y. Hariprasad Reddy, Margham Publishers.

B. Tech III-IISem. (ECE)

L T P C 3 1 0 3

15A04601 MICROPROCESSORS AND MICROCONTROLLERS

Course Objectives:

- To understand the architecture of 8086 MICROPROCESSOR.
- To learn various 8086 Instruction set and Assembler Directives.
- To learn 8051 assembly Language programming

Course Outcomes:

After completion of this subject the students will be able to:

- 1. Do programming with 8086 microprocessors
- 2. Understand concepts of Intel x86 series of processors
- 3. Program MSP 430 for designing any basic Embedded System
- 4. Design and implement some specific real time applications Using MSP 430 low power microcontroller.

UNIT I

Introduction-8086 Architecture-Block Diagram, Register Organization, Flag Register, Pin Diagram, Timing and Control Signals, System Timing Diagrams, Memory Segmentation, Interrupt structure of 8086 and Interrupt Vector Table. Memory organization and memory banks accessing.

UNIT II

Instruction Formats -Addressing Modes-Instruction Set of 8086, Assembler Directives-Macros and Procedures.- Sorting, Multiplication, Division and multi byte arithmetic code conversion. String Manipulation instructions-Simple ALPs.

UNIT III

Low power RISC MSP430 – block diagram, features and architecture, Variants of the MSP430 family viz. MSP430x2x, MSP430x4x, MSP430x5x and their targeted applications, MSP430x5x series block diagram, Addressing modes, Instruction set Memory address space, on-chip peripherals (analog and digital), and Register sets. Sample embedded system on MSP430 microcontroller.

UNIT-IV

I/O ports pull up/down resistors concepts, Interrupts and interrupt programming. Watchdog timer. System clocks. Low Power aspects of MSP430: low power modes, Active vs Standby current consumption, FRAM vs Flash for low power & reliability.

Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition: ADC and Comparator in MSP430, data transfer using DMA.

UNIT-V:

Serial communication basics, Synchronous/Asynchronous interfaces (like UART, USB, SPI, and I2C). UART protocol, I2C protocol, SPI protocol. Implementing and programming UART, I2C, SPI interface using MSP430, Interfacing external devices. Implementing Embedded Wi-Fi using CC3100

Text Books:

- 1. "Microprocessor and Microcontrollers", N. Senthil Kumar, M. Saravanan, S. Jeevanathan,
 - Oxford Publishers. 1 st Edition, 2010
- "The X86 Microprocessors , Architecture, Programming and Inerfacing" , Lyla B. Das, Pearson Publications, 2010
- 3. MSP430 microcontroller basics. John H. Davies, Newnes Publication, 1 st Edition, 2008

References:

http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode http://processors.wiki.ti.com/index.php/MSP430_16-Bit_Ultra-Low_Power_MCU_Training

B. Tech III-IISem. (ECE)

L T P C

15A04602 FI FCTRONIC MEASUREMENTS AND INSTRUMENTATION

Course Objectives:

- Studies on various analyzers and signal generators and can analyze the frequency component of a wave generated and its distortion levels.
- Studies on the difference between the various parameters which are to be measured that are getting out from the different sensors.

Course Outcomes:

After the completion of the course the students will be able to

- Understand basic principles involved in the meters for measuring voltage, current, resistance, frequency and so on.
- Employ CRO for measuring voltage, current, resistance, frequency and so on.
- Understand principles of measurements associated with different bridges.
- Get complete knowledge regarding working of advanced instruments such as logic analyzers and spectrum analyzers.

UNIT-I

Performance characteristics of Instruments: Static characteristics, Accuracy, Precision, Resolution, Sensitivity, static and dynamic calibration, Errors in Measurement, and their statistical analysis, dynamic characteristics-speed of Response, fidelity, Lag and dynamic error. DC ammeters, DC voltmeters-multirange, range extension/solid state and differential voltmeters, AC voltmeters –multirange, range extension. Thermocouple type RF ammeter, ohm meters, series type, shunt type, multimeter for voltage, current and resistance measurements.

UNIT-II

Oscilloscopes: Standard specifications of CRO,CRT features, derivation of deflection sensitivity, vertical and horizontal amplifiers, horizontal and vertical deflection systems, sweep trigger pulse, delay line, sync selector circuits, probes for CRO – active, passive, and attenuator type, triggered sweep CRO, and Delayed sweep, dual trace/beam CRO, Measurement of amplitude, frequency and phase (Lissajous method). Principles of sampling oscilloscope, storage oscilloscope, and digital storage oscilloscope, Digital frequency counters, time & Period measurements.

UNIT-III

Signal generators-fixed and variable, AF oscillators, function generators, pulse, random noise, sweep, and arbitrary waveform generators, their standards, specifications and principles of working (Block diagram approach). Wave analyzers, Harmonic distortion analyzers, Spectrum analyzers, and Logic analyzers.

UNIT-IV

Review of DC Bridges: Wheatstone bridge, Wein Bridge, errors and precautions in using bridges, AC bridges: Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance- SchearingBridge.Kelvin Bridge, Q-meter, EMI and EMC, Interference and noise reduction techniques.

UNIT-V

Sensors and Transducers - Active and passive transducers: Measurement of displacement (Resistance, capacitance, inductance; LVDT) Force (strain gauges) Pressure (piezoelectric transducers) Temperature (resistance thermometers, thermocouples, and thermistors), Velocity, Acceleration, Vibration, pH measurement Signal Conditioning Circuits.

TEXT BOOKS:

- A.D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", PHI, 5th Edition, 2002.
- H.S.Kalsi, "Electronic instrumentation", second edition, Tata McGraw Hill, 2004.
- 3. K. Lal Kishore, "Electronic Measurements & Instrumentations", Pearson Education, 2009.

REFERENCES:

- H.S.Kalsi, "Electronic instrumentation", second edition, Tata McGraw Hill, 2004.
- 2. Ernest O Doebelin and Dhanesh N Manik, "Measurement Systems Application and Design", TMH, 5th Edition, 2009.
- 3. Oliver and Cage, "Electronic Measurement and Instrumentation", TMH.
- 4. Robert A.Witte, "Electronic Test Instruments, Analog and Digital Measurements", Pearson Education, 2nd Ed., 2004.
- David A. Bell, "Electronic Instrumentation & Measurements", PHI, 2nd Edition, 2003.

B. Tech III-IISem. (ECE)

L T P (

15A04603 DIGITAL SIGNAL PROCESSING

Course Objectives:

- Program a DSP chip to filter signals using either assembly language or a C compiler for the chip.
- Use Z transforms and discrete time Fourier transforms to analyze a digital system.

Course Outcomes:

At the end of the course, the student should be able to:

- Formulate engineering problems in terms of DSP tasks.
- Apply engineering problems solving strategies to DSP problems.
- Design and test DSP algorithms.
- Analyze digital and analog signals and systems.
- Analyze and compare different signal processing strategies.

UNIT-I

Review of discrete-time signals and systems – Time domain analysis of discrete-time signals & systems, Frequency domain analysis of discrete-time signals and systems. **Discrete Fourier Transform:** Frequency-domain sampling and reconstruction of discrete-time signals, Discrete Fourier Transform (DFT), The DFT as a linear transformation, Relationship of the DFT to other transforms, Properties of DFT, Linear filtering methods based on DFT, Frequency analysis of signals using the DFT.

UNIT-II

Efficient computation of the DFT – Direct computation of DFT, Divide and conquer approach to computation of DFT, Radix-2, Radix-4, and Split radix FFT algorithms, Implementation of FFT algorithms, Applications of FFT algorithms – Efficient computation of the DFT of two real sequences, 2N point real sequences, Use of the FFT algorithm in linear filtering and correlation, A linear filtering approach to computation of the DFT- the Goertzel, and the Chirp-z transform algorithms, Quantization errors in the computation of DFT.

UNIT-III

Structures for the realization of discrete-time systems, Structures for FIR systems - Direct form, Cascade form, Frequency sampling, and Lattice structures, Structures for IIR systems - Direct form, Signal flow graphs & Transposed, Cascade form, Parallel form and Lattice structures, Conversion from Lattice structure to direct form, lattice - Ladder structure

UNIT-IV

General considerations – Causality and its implications, Characteristics of practical Frequency Selective Filters, Design of Finite Impulse Response (FIR) filters – Symmetric and asymmetric FIR filters, Design of linear phase FIR filters using windows, Design of linear phase FIR filters by the frequency sampling method, Design of optimum equi-ripple linear phase FIR filters, Comparison of design methods for linear phase FIR filters, Design of Impulse Invariance Response (IIR) filters from analog filters – IIR filter design by approximation of derivatives, by Impulse invariance, and by bilinear transformation methods, Characteristics of commonly used analog filters, Design examples of both FIR and IIR filters, Frequency transformation in the analog and digital domains, Illustrative problems.

UNIT-V

Introduction, Decimation, and interpolation, Sampling rate conversion by a rational factor, Implementation of sampling rate conversion, Multistage implementation of sampling rate conversion, Sampling rate conversion of bandpass signals, Sampling rate conversion by arbitrary factor, Applications of multirate signal processing.

TEXT BOOKS:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4th ed., 2007.
- 2. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3rd edition, 2009.

REFERENCES:

- A.V.Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2nd ed., Pearson Education, 2012.
- 2. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press, 2011.
- 3. Li Tan, Jean Jiang, "Digital Signal Processing, Fundamentals and Applications," Academic Press, Second Edition, 2013.

B. Tech III-IISem. (ECE)

L T P (

15A04604 VLSI DESIGN

Course Objectives:

- To understand VLSI circuit design processes.
- To understand basic circuit concepts and designing Arithmetic Building Blocks.
- To have an overview of Low power VLSI.

Course Outcomes:

- Complete Knowledge about Fabrication process of ICs
- Able to design VLSIcircuits as per specifications given.
- Capable of optimizing the design of Arithmetic / logic building Blocks at all levels of Design/Fabrication.
- Can implement circuit through various design styles (semi- Custom, Full Custom)

UNIT-I

Introduction: Basic steps of IC fabrication, PMOS, NMOS, CMOS &BiCMOS, and SOI process technologies, MOS transistors - MOS transistor switches - Basic gate using switches, working polartransistor Resistors and Capacitors.

Basic Electrical Properties of MOS and BiCMOS Circuits: Working of MOS transistors – threshold voltage; MOS design equations: I_{ds} – V_{ds} relationships, Threshold Voltage, Body effect, Channel length modulation , g_m , g_{ds} , figure of merit ω_0 ; Pass transistor, NMOS Inverter, CMOS Inverter analysis and design, Various pull ups loads, Bi-CMOS Inverters.

IINIT-II

Basic Circuit Concepts: Capacitance, resistance estimations- Sheet Resistance R_s , MOSDivice Capacitances, routing Capacitance, Analytic Inverter Delays, Driving large Capacitive Loads, Fan-in and fan-out.

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

UNIT-III

Gate level Design: Logic gates and other complex gates, Switch logic, Alternate gate circuits

Physical Design: Floor-Planning, Placement, routing, Power delay estimation, Clock and Power routing

UNIT-IV

Subsystem Design: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters, High Density Memory Elements.

VLSI Design styles: Full-custom, Standard Cells, Gate-arrays, FPGAs, CPLDs and Design Approach for Full-custom and Semi-custom devices.

UNIT-V

VHDL Synthesis: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation, Layout, Design capture tools, Design Verification Tools.

Test and Testability: Fault-modeling and simulation, test generation, design for testability, Built-in-self-test.

TEXT BOOKS:

- 1. Kamran Eshraghian, Eshraghian Douglas and A. Pucknell, "Essentials of VLSI circuits and systems", PHI, 2013 Edition.
- 2. K.Lal Kishore and V.S.V. Prabhakar, "VLSI Design", IK Publishers

REFERENCES:

- 1. Weste and Eshraghian, "Principles of CMOS VLSI Design", Pearson Education, 1999.
- 2. Wayne Wolf, "Modern VLSI Design", Pearson Education, 3rd Edition, 1997.
- 3. John P. Uyemura, "Chip Design for Submicron VLSI: CMOS layout and Simulation", Thomson Learning.
- 4. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John wiley, 2003.
- 5. John M. Rabaey, "Digital Integrated Circuits", PHI, EEE, 1997.

B. Tech III-IISem. (ECE)

L T P C

15A04605 MATLAB PROGRAMMING (CBCC-I)

Objectives:

- Understand the MATLAB Desktop, Command window and the Graph Window
- Be able to do simple and complex calculation using MATLAB
- Be able to carry out numerical computations and analyses
- Understand the mathematical concepts upon which numerical methods rely
- Ensure you can competently use the MATLAB programming environment
- Understand the tools that are essential in solving engineering problems

1. UNIT-I:Introduction to MATLAB

MATLAB Interactive Sessions, Menus and the toolbar, computing with MATLAB, Script files and the Editor Debugger, MATLAB Help System, Programming in MATLAB.

2. UNIT-II:Arrays

Arrays, Multidimensional Arrays, Element by Element Operations, Polynomial Operations Using Arrays, Cell Arrays, Structure Arrays.

3. UNIT-III:Functions & Files

Elementary Mathematical Functions, User Defined Functions, Advanced Function Programming, Working with Data Files.

4. UNIT-IV:Programming Techniques

Program Design and Development, Relational Operators and Logical Variables, Logical Operators and Functions, Conditional Statements, Loops, the Switch Structure, Debugging Mat Lab Programs.

Plotting :XY- plotting functions, Subplots and Overlay plots, Special Plot types, Interactive plotting, Function Discovery, Regression, 3-D plots.

5. UNIT-V:Linear Algebraic Equations

Elementary Solution Methods, Matrix Methods for (Linear Equations), Cramer's Method, Undet- ermined Systems, Order Systems.

TEXT BOOKS:

- 1. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed., Johns Hopkins University Press, 1996.
- 2. B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, 1994 (out of print) 3. L. Elden, Matrix Methods in Data Mining and Pattern Recognition, SIAM Press, 2007

Misc. Useful Information:

- NA-digest, http://www.netlib.org/na-digest-html
- Society for Industrial and Applied Mathematics (SIAM), see http://www.siam.org
- Google "MATLAB Primer" or "MATLAB Tutorial" and you should be able to access lots of free MATLAB.

B. Tech III-IISem. (ECE)

L T P (

15A04606 INDUSTRIAL ELECTRONICS (CBCC-I)

Course Outcome:

After completion of the course the students will be able to

- Get an overview of semi-conductor devices (such as PN junction diode & Transistor) and their switching characteristics.
- Understand the characteristics of AC to DC converters.
- Understand about the practical applications Electronics in industries.

UNIT I

Scope of industrial Electronics, Semiconductors, Merits of semiconductors, crystalline structure, Intrinsic semiconductors, Extrinsic semiconductors, current flow in semiconductor, Open-circuited p-n junction, Diode resistance, Zener diode, Photoconductors and junction photo diodes, Photo voltaic effect, Light emitting diodes (LED)

UNIT II

Introduction, The junction transistor, Conventions for polarities of voltages and currents, Open circuited transistor, Transistor biased in the active region, Current components in transistors, Currents in a transistor, Emitter efficiency, Transport factor and transistor- α , Dynamic emitter resistance, Transistor as an amplifier, Transistor construction, Letter symbols for semiconductor Devices, Characteristic curves of junction transistor in common configuration, static characteristic curves of PNP junction transistor in common emitter configuration. The transistor in common collector Configuration.

UNIT III

AC to DC converters- Introduction, Classification of Rectifiers, Half wave Rectifiers, Full wave Rectifiers, Comparison of Half wave and full wave rectifiers, Bridge Rectifiers, Bridge Rectifier, LC Filter, Bridge Rectifier, Regulated Power Supplies, Classification of Voltage Regulators, Short period Accuracy of Regulators, Long period .Accuracy of Voltage Regulator, Principle of automatic voltage Regulator, Simple D.C. Voltage stabilizer using Zener diode, D.C. Voltage Regulators, Series Voltage Regulators, Complete series voltage regulator circuit, Simple series voltage regulator.

UNIT IV

Resistance welding controls: Introduction, Resistance welding process, Basic Circuit for A.C. resistance welding, Types of Resistance welding, Electronic welding control used in Resistance welding, Energy storage welding.**Induction heating:** Principle of induction heating, Theory of Induction heating merits of induction heating, Application of induction heating, High frequency power source of induction heating. **Dielectric heating:** Principle of dielectric heating, theory of dielectric heating, dielectric properties of typical materials, electrodes used in dielectric heating, method of coupling of electrodes to the R.F. generator, Thermal losses in Dielectric heating, Applications.

UNIT V:

Ultrasonics: Introduction, Generation of Ultrasonic waves, Application of Ultrasonic waves, Ultrasonic stroboscope, ultrasonic as means of communication, ultrasonic flaw detection, Optical image on non-homogeneities, ultrasonic study of structure of matter, Dispersive study of structure of matter, Dispersive and colloidal effect of Ultrasonic, Coagulating action of Ultrasonic, separation of mixtures by ultrasoni8c waves, cutting and machining of hard materials by ultrasonic vibrations, Degassing of liquids by ultrasonic waves, Physico-chemical effects of ultrasonics, chemical effects of ultrasonics, Thermal effects of Ultrasonics, soldering and welding by ultrasonics, Ultrasonic Drying

Text Books:

- 1. G. K. Mithal, "Industrial Electronics", Khanna Publishers, Delhi, 2000.
- 2. J.Gnanavadivel, R.Dhanasekaran, P.Maruthupandi, "Industrial Electronics", Anuradha Publications, 2011.

Reference Books:

- 1. F. D. Petruzulla, "Industrial Electronics", McGraw Hill, Singapore, 1996.
- 2. M. H. Rashid, "power Electronics Circuits, Devices and Application", PHI, 3rd edition, 2004.
- G. M. Chute and R. D. Chute, "Electronics in Industry", McGraw Hill Ltd, Tokyo, 1995.

B. Tech III-IISem. (ECE)

LTPO

15A02605 NEURAL NETWORKS & FUZZY LOGIC (CBCC-I)

Course Objectives:

- To analyze basic neural computational models.
- To get in detail knowledge regarding different algorithms related to neural learning
- To study about different issues related probability and fuzziness and different types of fuzzy associative memories.

Course Outcomes:

After completion of the course the students will be able to

- Get an overview of different types of neural network models.
- Understand the functioning of single; multi-layer feed forward neural networks, associative memories and their rules and algorithms.
- Understand about fundamentals of fuzzy logic, their rules and applications.

UNIT |

Introduction to Neural Networks: Biological neuron, McCulloh-pitts neuron model, Neuron Modelling for Artificial Neural Systems, Models of Artificial Neural Networks-feedforward and feedback networks, Neural Processing, Learning as approximation, Supervised and unsupervised learning, Neural Network Learning rules- Hebbian, Perceptron, Delta, Widrow-Hoff, Correlation, Winner-Take-All learning rules.

UNIT II

Single-Layer Neural Networks: Classification Model, Features and Decision Regions, Discriminant Functions, Linear Machine and Minimum Distance Classification, Training and Classification using Discrete Perceptron, Single-Layer Continuous Perceptron Networks, Multicategory Single-Layer Perceptron Networks, Hopfield Network – Discrete-time, Gradient type.

Multi-Layer Neural Networks: Linearly Nonseparable Pattern Classification, Delta Learning Rule for Multiperceptron Layer, Generalized Delta Learning Rule, Feed forward Recall and Error Back-propagation training, Learning Factors.

UNIT III

Associative Memories: Basic concepts, Linear Associator, Recurrent Auto associate Memory, Performance Analysis of Recurrent Auto associate Memory, Bidirectional Associate Memory(BAM): Memory Architecture, Association Encoding and Decoding, Stability Considerations, Memory Example and Performance Evaluation, Improved coding of memories, Multidirectional Associative Memory, Associative Memory of Spatial-Temporal Patterns.

UNIT IV

Fuzzy Set– Introduction: Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set theory and operations, Properties of fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp conversion.

UNIT V

Fuzzy Logic - Fuzzy Membership, Rules: Membership functions, interference in fuzzy logic, fuzzy if-then rules, Fuzzy implications and Fuzzy algorithms, Fuzzyfications&Defuzzificataions, Fuzzy Controller, Industrial applications.

Text Books:

- JacekM.Zurada," Introdution to Artificial Neural Systems", West Publishing Company
- 2. Timothy J.Ross, "Euzzy Logic with Engineering Applications", Wiley Indian 3rd Edition

Reference Books:

- 1. George J.Klir/Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and apllications", Prentice-Hall Edition
- 2. S.N.Sivanandam, S.Sumathi, S.N.Deepa, "Introduction to Neural Networks using MATLAB 6.0", TMH, 2006.
- S.N.Sivanandam, S.Sumathi, S.N.Deepa, "Introduction to Fuzzy Logic using MATLAB 6.0", TMH, 2006
- 4. Simon Haykins, "Neural Networks", Pearson Education.

B. Tech III-IISem. (ECE)

L T P (

15A01608 INTELLECTUAL PROPERTY RIGHTS (CBCC – I)

COURSE OBJECTIVE:

This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations.

UNIT - I

Introduction To Intellectual Property: Introduction, Types Of Intellectual Property, International Organizations, Agencies And Treaties, Importance Of Intellectual Property Rights.

UNIT - II

Trade Marks: Purpose And Function Of Trade Marks, Acquisition Of Trade Mark Rights, Protectable Matter, Selecting And Evaluating Trade Mark, Trade Mark Registration Processes.

UNIT - III

Law Of Copy Rights: Fundamental Of Copy Right Law, Originality Of Material, Rights Of Reproduction, Rights To Perform The Work Publicly, Copy Right Ownership Issues, Copy Right Registration, Notice Of Copy Right, International Copy Right Law.

Law Of Patents: Foundation Of Patent Law, Patent Searching Process, Ownership Rights And Transfer

UNIT - IV

Trade Secrets: Trade Secrete Law, Determination Of Trade Secrete Status, Liability For Misappropriations Of Trade Secrets, Protection For Submission, Trade Secrete Litigation.

Unfair Competition: Misappropriation Right Of Publicity, False Advertising.

UNIT - V

New Developments Of Intellectual Property: New Developments In Trade Mark Law; Copy Right Law, Patent Law, Intellectual Property Audits.

International Overview On Intellectual Property, International – Trade Mark Law, Copy Right Law, International Patent Law, International Development In Trade Secrets Law.

TEXT BOOKS & REFERENCES:

- 1. Intellectual Property Rights, Deborah. E. Bouchoux, Cengage Learing.
- 2. Intellectual Property Rights— UnleashmyThe Knowledge Economy, PrabuddhaGanguli, Tate Mc Graw Hill Publishing Company Ltd.,

Course Outcomes:

On completion of this course, the student will have an understanding of the following:

- a) Intellectual Property Rights and what they mean
- b) Trade Marks and Patents and how to register them
- c) Laws Protecting the Trade Marks and Patents
- d) Copy Right and laws related to it.

B. Tech III-IISem. (ECE)

L T P (

15A04607 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

Part A: 8086 Microprocessor Programs using NASM/8086 microprocessor kit.

- 1. Introduction to MASM Programming.
- 2. Programs using arithmetic and logical operations
- Programs using string operations and Instruction prefix: Move Block, Reverse string, Sorting, String comparison
- 4. Programs for code conversion
- 5. Multiplication and Division programs
- 6. Sorting and multi byte arithmetic
- 7. Programs using CALL and RET instructions

Part B Embedded C Experiments using MSP430 Microcontroller

- 1. Interfacing and programming GPIO ports in C using MSP430 (blinking LEDs, push buttons)
- 2. Usage of Low Power Modes: (Use MSPEXP430FR5969 as hardware platform and demonstrate the low power modes and measure the active mode and standby mode current)
- 3. Interrupt programming examples through GPIOs
- 4. PWM generation using Timer on MSP430 GPIO
- 5. Interfacing potentiometer with MSP430
- 6. PWM based Speed Control of Motor controlled by potentiometer connected to MSP430 GPIO
- 7. Using ULP advisor in Code Composer Studio on MSP430
- 8. Low Power modes and Energy trace++:
 - a. Enable Energy Trace and Energy Trace ++ modes in CCS
 - b. Compute Total Energy, and Estimated lifetime of an AA battery.

Note : Any six experiment from Part A and Six experiments from Part B are to be conducted

B. Tech III-IISem. (ECE)

LTPC

15A04608 DIGITAL SIGNAL PROCESSING LABORATORY

Course Outcomes:

- Able to design real time DSP systems and real world applications.
- Able to implement DSP algorithms using both fixed and floating point processors.

List of Experiments: (Minimum of 5 experiments are to be conducted from each part)Software Experiments (PART – A)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Using DSP Processor kits (Floating point) and Code Composure Studio (CCS) (PART – B)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Equipment/Software Required:

- 1. Licensed MATLAB software with required tool boxes for 30 users.
- 2. DSP floating Processor Kits with Code Composure Studio (8 nos.)
- 3. Function generators
- 4. CROs
- 5. Regulated Power Supplies.

B. Tech III-IISem. (ECE)

LTPC

15A52602 ADVANCED ENGLISH LANGUAGE COMMUNICATION SKILLS (AELCS) LAB (Audit Course)

1. INTRODUCTION

With increased globalization and rapidly changing industry expectations, employers are looking for the wide cluster of skills to cater to the changing demand. The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information and to organise ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

UNIT-I: COMMUNICATION SKILLS

- 1. Reading Comprehension
- 2. Listening comprehension
- 3. Vocabulary Development
- Common Errors

UNIT-II: WRITING SKILLS

- 1. Report writing
- 2. Resume Preparation
- 3. E-mail Writing

UNIT-III: PRESENTATION SKILLS

- 1. Oral presentation
- 2. Power point presentation
- 3. Poster presentation

UNIT-IV: GETTING READY FOR JOB

- Debates
- 2. Group discussions
- Job Interviews

UNIT-V: INTERPERSONAL SKILLS

- 1. Time Management
- 2. Problem Solving & Decision Making
- 3. Etiquettes

4. LEARNING OUTCOMES:

- Accomplishment of sound vocabulary and its proper use contextually
- Flair in Writing and felicity in written expression.
- Enhanced job prospects.
- Effective Speaking Abilities

5. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infra-structural facilities to accommodate at least 60 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed – 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

6. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and G

- 1. Walden Infotech: Advanced English Communication Skills Lab
- 2. K-VAN SOLUTIONS-Advanced English Language Communication Skills lab
- 3. DELTA's key to the Next Generation TOEFL Test: Advanced Skills Practice.
- 4. **TOEFL & GRE**(KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- 5. Train2success.com

7. BOOKS RECOMMENDED:

- Objective English for Competitive Exams, Hari Mohana Prasad, 4th edition, Tata Mc Graw Hill.
- Technical Communication by Meenakshi Raman & Sangeeta Sharma, O U Press 3rdEdn. 2015.
- 3. Essay Writing for Exams, AudroneRaskauskiene, Irena Ragaisience&RamuteZemaitience,OUP, 2016
- 4. **Soft Skills for Everyone,** Butterfield Jeff, Cengage Publications, 2011.
- Management Shapers Series by Universities Press (India) Pvt Ltd., Himayatnagar, Hyderabad 2008.
- **6.** Campus to Corporate, Gangadhar Joshi, Sage Publications, 2015
- Communicative English, E Suresh Kumar & P. Sreehari, Orient Blackswan, 2009.
- 8. English for Success in Competitive Exams, Philip Sunil Solomon OUP, 2015

B. Tech IV-ISem. (ECE)

15A04701 OPTICAL FIBRE COMMUNICATION

Course Objectives:

- The course gives an account of optical Communication starting with the basic of fiberoptics.
- To give clear understanding of various components such as Optical fibers, Photo detectors, connectors, coupling devices and optical amplifiers Knowledge of various components used in optical networks.
- Knowledge about Various topologies used to construct an optical networks.

Course Outcomes:

- Analyze the performance of both digital and analog optical fiber systems
- Calculate the system bandwidth, noise, probability of error and maximum usable bit rate of a digital fiber system
- Calculate the system link loss, distortion and dynamic range of an RF photonic link
- To perform characteristics of fiber sources and detectors, design as well as conduct experiment in software and hardware, and analyze the results to provide valid conclusions.

UNIT-I

Introduction to Optical Fibers: Evolution of fiber optic system- Element of an Optical Fiber Transmission link- Ray Optics-Optical Fiber Modes and Configurations –Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes –Single Mode Fibers-Graded Index fiber structure.

UNIT-II

Signal Degradation Optical Fibers: Attenuation – Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Wave guides - Information Capacity determination –Group Delay- Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling –Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT-III

Fiber Optical Sources and Coupling: Direct and indirect Band gap materials-LED structures –Light source materials –Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition –Rate equations –External Quantum efficiency –Resonant frequencies –Temperature effects, Introduction to Quantum laser, source-to-fiber Power Launching, Lensing schemes, Fiber –to- Fiber joints, Fiber splicing.

UNIT-IV

Fiber Optical Receivers : PIN and APD diodes –Photo detector noise, SNR, Detector Response time, Avalanche Multiplication Noise –Comparison of Photo detectors – Fundamental Receiver Operation – preamplifiers, Error Sources –Receiver Configuration –Probability of Error – Quantum Limit.

UNIT-V

System Designand Applications: Design of Analog Systems: system specification, power budget, bandwidth budget.

Design of Digital Systems: system specification, rise time budget, power budget, Receiver sensitivity.

Text Books:

- Gerd Keiser, "Optical Fiber Communication" McGraw –Hill International, Singapore, 3rd ed., 2000.
- J.Senior, "Optical Communication, Principles and Practice", Prentice Hall of India, 1994.

References:

- Max Ming-Kang Liu, "Principles and Applications of Optical Communications", TMH, 2010.
- S.C.Gupta, "Text book on optical fiber communication and its applications", PHI, 2005.
- 3. Satish Kumar, "Fundamentals of Optical Fiber communications", PHI, 2009.

B. Tech IV-ISem. (ECE)

15A04702 EMBEDDED SYSTEMS

Course Objectives:

- To understand the fundamental concepts of Embedded systems.
- To learn the kernel of RTOS, architecture of ARM processor.

Course Outcomes:

After completion the students will be able to

- Design of embedded systems leading to 32-bit application development.
- Understand hardware-interfacing concepts to connect digital as well as analog sensors while ensuring low power considerations.
- Review and implement the protocols used by microcontroller to communicate with external sensors and actuators in real world.
- Understand Embedded Networking and IoT concepts based upon connected MCUs

UNIT-I

Introduction to Embedded Systems

Embedded system introduction, host and target concept, embedded applications, features and architecture considerations for embedded systems- ROM, RAM, timers; data and address bus concept, Embedded Processor and their types, Memory types, overview of design process of embedded systems, programming languages and tools for embedded design

UNIT-II

Embedded processor architecture

CISC Vs RISC design philosophy, Von-Neumann Vs Harvard architecture. Introduction to ARM architecture and Cortex – M series, Introduction to the TM4C family viz. TM4C123x & TM4C129x and its targeted applications. TM4C block diagram, address space, on-chip peripherals (analog and digital) Register sets, Addressing modes and instruction set basics.

UNIT- III

Overview of Microcontroller and Embedded Systems

Embedded hardware and various building blocks, Processor Selection for an Embedded System , Interfacing Processor, Memories and I/O Devices, I/O Devices and

I/O interfacing concepts, Timer and Counting Devices, Serial Communication and Advanced I/O, Buses between the Networked Multiple Devices.Embedded System Design and Co-design Issues in System Development Process, Design Cycle in the Development Phase for an Embedded System, Uses of Target System or its Emulator and In-Circuit Emulator (ICE), Use of Software Tools for Development of an Embedded System Design metrics of embedded systems - low power, high performance, engineering cost, time-to-market.

UNIT-IV

Microcontroller fundamentals for basic programming

I/O pin multiplexing, pull up/down registers, GPIO control, Memory Mapped Peripherals, programming System registers, Watchdog Timer, need of low power for embedded systems, System Clocks and control, Hibernation Module on TM4C, Active vs Standby current consumption. Introduction to Interrupts, Interrupt vector table, interrupt programming. Basic Timer, Real Time Clock (RTC), Motion Control Peripherals: PWM Module & Quadrature Encoder Interface (QEI).

Unit-V

Embedded communications protocols and Internet of things

Synchronous/Asynchronous interfaces (like UART, SPI, I2C, USB), serial communication basics, baud rate concepts, Interfacing digital and analog external device, Implementing and programming UART, SPI and I2C, SPI interface using TM4C.Case Study: Tiva based embedded system application using the interface protocols for communication with external devices "Sensor Hub BoosterPack" Embedded Networking fundamentals, IoT overview and architecture, Overview of wireless sensor networks and design examples. Adding Wi-Fi capability to the Microcontroller, Embedded Wi-Fi, User APIs for Wireless and Networking applications Building IoT applications using CC3100 user API.

Case Study: Tiva based Embedded Networking Application: "Smart Plug with Remote Disconnect and Wi-Fi Connectivity"

Text Books:

- Embedded Systems: Real-Time Interfacing to ARM Cortex-M Microcontrollers, 2014, Create space publications ISBN: 978-1463590154.
- Embedded Systems: Introduction to ARM Cortex M Microcontrollers, 5th edition
 - Jonathan W Valvano, Createspace publications ISBN-13: 978-1477508992
- 3. Embedded Systems 2E Raj Kamal, Tata McGraw-Hill Education, 2011 ISBN-
- 4. 0070667640, 9780070667648

References:

- http://processors.wiki.ti.com/index.php/HandsOn_Training_for_TI_Embedded Processors
- 2. http://processors.wiki.ti.com/index.php/MCU_Day_Internet_of_Things_2013_ Workshop
- 3. http://www.ti.com/ww/en/simplelink_embedded_wi-fi/home.html
- CC3100/CC3200 SimpleLink™ Wi-Fi® Internet-on-a-Chip User Guide Texas Instruments Literature Number: SWRU368A April 2014–Revised August 2015.

B. Tech IV-ISem. (ECE) 3 1 0 3

15A04703 MICROWAVE ENGINEERING

Course objectives:

The Objectives of the course are:

- TO develop the knowledge on transmission lines for microwaves, cavity resonators and wave guide components and applications.
- To understand the scattering matrix parameters and its use.
- To introduce the student the microwave test bench for measure different parameters like attenuation, VSWR, etc.,

Course Outcomes:

- Ability to analyze micro-wave circuits incorporating hollow, dielectric and planar waveguides, transmission lines, filters and other passive components, active devices.
- Ability to Use S-parameter terminology to describe circuits and to explain how microwave devices and circuits are characterized in terms of their "S"-Parameters.
- Ability to understanding of microwave transmission lines and how to Use microwave components such as isolators, Couplers, Circulators, Tees, Gyrators etc.

UNIT-I

MICROWAVE TRANSMISSION LINES:Introduction, Microwave spectrum and bands, applications of Microwaves.Rectangular Waveguides-Solution of Wave Equation in Rectangular Coordinates, TE/TM mode analysis, Expressions for fields, Characteristic equation and cutoff frequencies, filter characteristics, dominant and degenerate modes, sketches of TE and TM mode fields in the cross-section.Mode characteristics- Phase and Group velocities, wavelengths and impedance relations,IllustrativeProblems.

Rectangular Waveguides– Power Transmission and Power Losses, Impossibility of TEM Modes, Micro strip lines-introduction, Z_0 relations, effective dielectric constant, losses, Q-factor, Cavity resonators-introduction, Rectangular and cylindrical cavities, dominant modes and resonant frequencies, Q-factor and coupling coefficients. Illustrative Problems.

UNIT-II

WAVEGUIDE COMPONENTS AND APPLICATIONS:Coupling mechanisms- probe, loop, aperture types. Wave guide discontinuities-waveguide Windows, tuning screws and posts, matched loads. Waveguide attenuators-resistive card, rotary vane Attenuators; waveguide phase shifters-dielectric, rotary vane phase shifters. Wave guide multiport junctions-E plane and H plane Tees, Magic Tee, Directional couplers-2 hole, Bothe hole types,IllustrativeProblems.

Ferrites-composition and characteristics, Faraday rotation; Ferrite components-Gyrator, Isolator, Circulator.

UNIT-III

MICROWAVE TUBES:Limitations and losses of conventional tubes at microwave frequencies. Microwave tubes-O type and M type classifications. O type tubes: 2 cavity klystrons-structure, Reentrant cavities, velocity modulation process and Applegate diagram, bunching process and small signal theory-Expressions for O/P power and efficiency. Reflex Klystrons-structure, Velocity Modulation, Applegate diagram, mathematical theory of bunching, power output, efficiency, oscillating modes and O/P characteristics, Effect of Repeller Voltage on Power O/P,IllustrativeProblems.

HELIX TWTS: Significance, types and characteristics of slow wave structures; structure of TWT and amplification process (qualitative treatment), suppression of oscillations, gain considerations.

UNIT-IV

M-TYPE TUBES: Introduction, cross field effects, Magnetrons-different types, cylindrical travelling wave magnetron-Hull cutoff and Hartree conditions, modes of resonance and PI-mode operation, separation of PI-mode, O/P characteristics.lllustrativeProblems.

MICROWAVE SOLID STATE DEVICES: Introduction, classification, applications, Transfer Electronic Devices, Gunn diode-principles, RWH theory, characteristics, basic modes of operation - Gunn oscillation modes. LSA Mode, Varactor Diode, Parametric Amplifier, Introduction to Avalanche Transit time devices (brief treatment only).

UNIT-V

MICROWAVE MEASUREMENTS:

Scattering Matrix-Significance, Formulation and properties. S Matrix calculations for 2-port junction, E plane and H plane Tees, Magic Tee, Directional coupler, circulator and Isolator, Illustrative Problems

Description of Microwave bench-different blocks and their features, errors and precautions; Microwave power measurement-Bolometers, Measurement of attenuation, frequency standing wave measurements –measurement of low and high VSWR, cavity-Q, impedance measurements.

TEXT BOOKS:

- 1. Microwave devices and circuits-Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Microwave principles-Herbert J.Reich, J.G.Skalnik, P.F.Ordung and H.L.Krauss, CBS publishers and distributors, New Delhi, 2004.

REFERENCES:

- Foundations for microwave engineering-R.E.Collin, IEEE press, John Wiley, 2ndedition, 2002.
- Microwave circuits and passive devices-M.L.Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New age International publishers Ltd., 1995.
- 3. Microwave engineering passive circuits-Peter A.Rizzi, PHI, 1999.
- 4. Electronic and Radio Engineering-F.E.Terman, McGraw-Hill, 4th Edition, 1995.
- 5. Microwave Engineering A. Das, TMH, 2nd ed., 2009.

B. Tech IV-ISem. (ECE)

L T P (

15A04704 DATA COMMUNICATIONS & NETWORKING

UNIT-I

Introduction to Networks & Data Communications

The Internet, Protocols & Standards, Layered Tasks, OSI Model, TCP / IP, Addressing, Line Coding Review, Transmission Media: Guided and unquided Media Review.

UNIT-II

Switching

Datagram Networks, Virtual Circuit Networks, Structure of a switch ,Ethernet Physical Layer, Data Link Layer: Error detection and Correction Data Link Control: Framing, Flow and Error Control Protocols, Noiseless Channel and Noisy Channel Protocol, HDLC, Point-to-Point Protocol.

UNIT-III

Multiple Access

RANDOH, CDMA, CSMA/CD, CSMA/CA, Controlled Access, Channelization, Wired LANs: IEEE Standards, Standard Ethernet, Fast Ethernet, Gigabit Ethernet, Wireless LAN, IEEE 802.11, Bluetooth IEEE 802.16.

UNIT-IV

Network Laver

Design Issues, Routing Algorithms, Congestion control, Algorithms.IPV4 Addresses, Connecting Devices, Virtual LAN IPV6 Addresses, Internet Protocol, Hardware Addressing versus IP Addressing, IP Data Gram.

UNIT-V

Transport Layer Protocol

UDP and TCP, ATM, Cryptography, Network Security

Text Books:

1. B. A. Forouzan, "Data Communications and Networking", MGH, 4th ed. 2007.

Reference Books:

- 1. A. S. Tanenbaum, "Computer Networks", PHI.
- 2. W. Stallings, "Data and Computer Communication", PHI.

B. Tech IV-ISem. (ECE)

L T P (

15A04705 RADAR SYSTEMS (CBCC-II)

Course Objectives:

The objectives of course are:

- Radar fundamentals and analysis of radar signals.
- To understand various technologies involved in the design of radar transmitters and receivers.
- To learn various like MTI, Doppler and tracking radar and their comparison.

Course Outcomes:

After completion of the course, the student will be able to:

- Understand radar fundamentals and analysis of the radar signals.
- Understand various radar transmitters and receivers.
- Understand various radar like MTI, Doppler and tracking radar and their comparison.

UNIT I

BASICS OF RADAR: Introduction, Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications, Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation, Illustrative Problems.

RADAR EQUATION: SNR, Envelope Detector, False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.

UNIT II

CW AND FREQUENCY MODULATED RADAR: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, Illustrative Problems.

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Multiple Frequency CW Radar.

UNIT III

MTI AND PULSE DOPPLER RADAR: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers - Filter Characteristics, Blind Speeds, Double Cancellation, And Staggered PRFs. Range

Gated Doppler Filters, MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler radar.

UNIT IV

TRACKING RADAR: Tracking with Radar, Sequential Lobing, Conical Scan, Monopulse Tracking Radar – Amplitude Comparison Monopulse (one- and two-coordinates), Phase Comparison Monopulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT V

DETECTION OF RADAR SIGNALS IN NOISE: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise.

RADAR RECEIVERS: Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus Parallel Feeds, Applications, Advantages and Limitations.

TEXT BOOKS:

 Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2ndEdition, 2007.

REFERENCES:

- Introduction to Radar Systems Merrill I. Skolnik, 3rd Edition, Tata McGraw-Hill, 2001.
- Radar Principals, Technology, Applications Byron Edde, Pearson Education, 2004.
- 3. Radar Principles Peebles, Jr., P.Z.Wiley, NweYork, 1998.

B. Tech IV-ISem. (ECE)

L T P (

15A04706 ADAPTIVE SIGNAL PROCESSING (CBCC-II)

Course Objective:

- To study in detail about adaptive Systems.
- To study about various Linear optimum filtering techniques.
- To study about various techniques related Linear and Non Linear adaptive filtering.

Course outcome:

- After the course students is expected to be able to:
- Get complete knowledge regarding adaptive systems
- Design various linear optimum filters by employing different techniques associated withthem
- Understand various techniques related to with linear and nonlinear adaptive filtering and their design considerations

UNIT I:

Introduction to Adaptive Systems: Eigen Analysis - Eigen Value problem, Properties of eigen values and eigen vectors, Eigen filters, Eigen value computations, Adaptive Systems - Definitions, Characteristics, Applications and Examples of Adaptive systems, The adaptive linear combiner – Description, weight vectors, Desired response performance function, Gradient and Mean square error(MSE).

UNIT II:

Linear Optimum Filtering: Wiener Filters – Linear optimum filtering, Principle of Orthogonality, Wiener-Hopf equations, Error performance surface, Channel Equalization, Linearly constrained minimum variance filter, Linear Prediction – Forward and Backward linear prediction, Levinson-Durbin Algorithm, Properties of prediction error filters, AR modeling of stationary stochastic process, Lattice predictors, Joint process estimation, Kalman Filters - Recursive mean square estimation for scalar random variables, Kalman filtering problem, The innovations process, Estimation of the state using innovations process, Filtering, Initial conditions, Variants of the Kalman filter, Extended Kalman filter, Problem Solving.

UNIT III:

Linear Adaptive Filtering-I: Method of Steepest descent algorithm and its stability, Least Means Square (LMS) algorithm – Structure & operation of LMS algorithm, Examples, Stability & performance analysis of the LMS algorithm, Simulations of Adaptive equalization using LMS algorithm, Convergence aspects, Method of Least Squares (LS) - Statement, Data windowing, Minimum sum of error squares, Normal equations and linear least squares filters, Properties.

UNIT IV:

Linear Adaptive Filtering-II Recursive Least Squares (RLS) Algorithm – Matrix inversion lemma, The exponentially weighted RLS algorithm, Update recursion for the sum of weighted error squares, Example, Convergence Analysis, Simulation of adaptive equalization using RLS algorithm, Order Recursive Adaptive Filters – Adaptive forward and backward linear prediction, Least squares Lattice predictor, QR-Decomposition based Least squares Lattice filters & their properties, Simulation of Adaptive equalization using Lattice Filter.

UNIT V:

Nonlinear Adaptive Filtering: Blind deconvolution – Theoretical and practical considerations, Bussgang algorithm for blind equalization for real base band channels, Special cases of Bussgang algorithm, Simulation studies of Bussgang algorithms, SVD, Problem solving.

Text Books:

- 1. Simon Haykin, "Adaptive Filter Theory," Prentice Hall, 4th Edition, 2002.
- 2. Bernard Widrow, Samuel D. Streams, "Adaptive Signal Processing," Prentice Hall, 2005.

References:

- Paulo S.R. Diniz, Adaptive Filtering Algorithms and Practical Implementation, Third Edition, Springer, Kluwer Academic Publishers.
- 2. Alexander D Poularikas, Zayed M Ramadan, Adaptive Filtering Primer with MATLAB, CRC Press Taylor & Francis Group, 2008 Indian Edition.
- Ali H. Sayed, Adaptive filters, IEEE Press, Wiley-Interscience, A john Wiley & Sons. INC. Publication.
- S. Thomas Alexander, "Adaptive Signal Processing-Theory & Applications," Springer – Verlag, 1986

B. Tech IV-ISem. (ECE)

L T P (

15A04707 FPGA DESIGN (CBCC-II)

UNIT-I

Introduction to Field-programmable Gate Arrays

Programmability and DSP. A Short History of the Microchip, Challenges of FPGAs, DSP System Basics, DSP System Definitions, DSP Transforms, Filter Structures, Adaptive Filtering, Basics of Adaptive Filtering

UNIT-II

Arithmetic Basics

Number Systems, Fixed-point and Floating-point, Arithmetic Operations, Fixed-point versus Floating-point, Technology Review: Introduction, Architecture and Programmability, DSP Functionality Characteristics .Processor Classification, Microprocessors, DSP processors.

UNIT-III

Current FPGA Technologies

Introduction, Toward FPGA, Altera FPGATechnologies, Xilinx FPGA Technologies, Detailed FPGA Implementation Issues: Introduction, Various Forms of the LUT, Memory Availability, Fixed Coefficient Design Techniques, Distributed Arithmetic, Reduced Coefficient Multiplier, Rapid DSP System Design Tools and Processes for FPGA: Introduction, Design Methodology Requirements for FPGA DSP, IP Core Generation Tools for FPGA, System level Design Tools for FPGA.

UNIT-IV

The IRIS Behavioral Synthesis

Introduction of Behavioral Synthesis Tools, Hierarchical Design Methodology, Hardware Sharing Implementation (Scheduling Algorithm) for IRIS.DECISION ANALYSIS AND SUPPORT: Decision Making., Modeling throughout System Development, Modeling for Decision.

UNIT-V

Complex DSP Core Design for FPGA

Motivation for Design for Reuse, Intellectual Property (IP) Cores, Evolution of IP Cores. Model-based Design for Heterogeneous FPGA: Dataflow Modeling and Rapid Implementation for FPGA DSP Systems, Rapid Synthesis and Optimization of Embedded Software from DFGs, System-level Modeling for Heterogeneous Embedded

DSP Systems, System level Design and Exploration of Dedicated Hardware Network, Adaptive Beam former Example, Low Power FPGA Implementation.

TEXT BOOKS:

- 1. Roger Woods, John McAllister, Gaye Light body, Ying Yi, FPGA-based Implementation of Signal Processing Systems, Wiley, 2008.
- 2. John V. Old Field, Richrad C. Dorf, Field Programmable Gate Arrays, Wiley, 2008.
- 3. Michel John Sebastian Smith, Application Specific Integrated Circuits, Addison Wesley Professional, 2008.
- 4. Stephen D. Brown, Robert J. Francis, Jonathan Rose, Zvonko G. Vranesic, Field Programmable Gate Arrays, 2nd Edition, Springer, 1992.

B. Tech IV-ISem. (ECE)

L T P C

15A04708 DIGITAL IMAGE PROCESSING (CBCC-III)

OBJECTIVES:

- To know the fundamentals of Image Processing
- To know about various techniques of image enhancement, reconstruction and image compression.

Course Outcomes:

- Able to apply the Image processing concept for various fields of engineering and real lifeto process as per needs &specifications.
- Get the skills to Heuristically develop new techniques to process images of any context
- Can experiment, analyze & interpret imagedata /processing data.

UNIT-I

Introduction to Digital Image processing – Example fields of its usage- Image sensing and Acquisition – image Modeling - Sampling, Quantization and Digital Image representation - Basic relationships between pixels, - Mathematical tools/ operations applied on images - imaging geometry.

UNIT-II

2D Orthogonal and Unitary Transforms and their properties - Fast Algorithms - Discrete Fourier Transform - Discrete Cosine Transforms- Walsh- Hadamard Transforms- Hoteling Transforms, Comparison of properties of the above.

UNIT-III

Background enhancement by point processing Histogram processing, Spatial filtering, Enhancement in frequency Domain, Image smoothing, Image sharpening, Colour image Enhancement

UNIT-IV

Degradation model, Algebraic approach to restoration – Inverse filtering – Least Mean Square filters, Constrained Least square restoration, Blind Deconvolution.

Image segmentation:Edge detection -,Edge linking , Threshold based segmentation methods - Region based Approaches - Template matching -use of motion in segmentation

UNIT-V

Redundancies in Images - Compression models, Information theoretic perspective-Fundamental coding theorem. Huffman Coding, Arithmetic coding, Bit plane coding, Run length coding, Transform coding, Image Formats and compression standards.

Text Books:

- 1. R.C .Gonzalez & R.E. Woods, "Digital Image Processing", Addison Wesley/Pearson education, 3rd Edition, 2010.
- 2. A .K. Jain, "Fundamentals of Digital Image processing", PHI.

References:

- 1. Rafael C. Gonzalez, Richard E woods and Steven L.Eddins, "Digital Image processing using MATLAB", Tata McGraw Hill, 2010.
- S jayaraman, S Esakkirajan, T Veerakumar, "Digital Image processing", Tata McGraw Hill
- 3. William K. Pratt, "Digital Image Processing", John Wilely, 3rd Edition, 2004.

B. Tech IV-ISem. (ECE)

L T P (

15A04709 CELLULAR & MOBILE COMMUNICATION (CBCC-III)

OBJECTIVES:

- To enable the student to synthesis and analyze wireless and mobile cellular communication systems over a stochastic fading channel.
- To provide the student with an understanding of advanced multiple access techniques.
- To provide the student with an understanding of diversity reception techniques. To give the student an understanding of digital cellular systems (GSM, CDMA One, GPRS, CDMA 2000, and W-CDMA).

Course Outcomes:

By the end of this course, the student will be able to analyze and design wireless and mobile cellular systems.

- The student will be able to understand impairments due to multipath fading channel.
- Understand the fundamental techniques to overcome the different fading effects.
- To understand Co-channel and Non Co-channel interferences.
- Able to familiar with cell coverage for signal and traffic, diversity techniques and mobile antennas.
- Understanding of frequency management, channel assignment and types of handoff.

UNIT I

CELLULAR MOBILE RADIO SYSTEMS:Introduction to Cellular Mobile system, performance criteria, uniqueness of mobile radio environment, operation of cellular systems, Hexagonal shaped cells, Analog and Digital Cellular systems.

ELEMENTS OF CELLULAR RADIO SYSTEM DESIGN:General description of the problem, concept of frequency channels, Co-channel Interference Reduction Factor, desired C/I from a normal case in a Omni directional Antenna system, Cell splitting, consideration of the components of cellular system.

UNIT II

INTERFERENCE: Introduction to Co-channel interference, real time co-channel interference, Co-channel measurement, design of Antenna system, Antenna parameters and their effects, diversity receiver, non-co-channel interference-different types.

UNIT III

CELL COVERAGE FOR SIGNAL AND TRAFFIC: Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long distance propagation antenna height gain, form of a point to point model.

UNIT IV

CELL SITE AND MOBILE ANTENNAS:Sum and difference patterns and their synthesis, Omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gainantennas.

FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Numbering and grouping, setup access and paging channels channel assignments to cell sites and mobile units, channel sharing and borrowing, sectorization, overlaid cells, non-fixed channel assignment.

UNIT V

HANDOFF: Handoff, dropped calls and cell splitting, types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle locating methods, dropped call rates and their evaluation. **DIGITAL CELLULAR NETWORKS:** GSM architecture, GSM channels, multiplex access scheme. TDMA. CDMA.

TEXT BOOKS:

- Mobile cellular telecommunications-W .C. Y. Lee, Tata Mc-Graw Hill, 2nd Edition, 2006.
- 2. Wireless communications-Theodore. S. Rapport, Pearson Education, 2ndEdn., 2002.

REFERENCES:

- Principles of Mobile communications-Gordon L. Stuber, Springer International 2nd Edition, 2007.
- Wireless and Mobile Communications-Lee McGraw Hills, 3rd Edition, 2006.
- Wireless communications and Networking-Jon W.Mark and WeihuaZhqung, PHI, 2005.
- 4. Wireless communication Technology-R.Blake, Thompson Asia Pvt.Ltd., 2004.

B. Tech IV-ISem. (ECE)

L T P (3 1 0 3

15A04710 REAL TIME SYSTEMS (CBCC-III)

Course Outcomes

After completion of the course students able to

- Know about the basic concepts of embedded systems
- Understand the different architectural features of embedded systems
- Understand the goal embedded systems in real time design applications

UNIT-I

Introduction to Real Time System

Introduction to Real time Embedded System, need for a real-time system, different kinds (reactive, time driven, deadline driven, etc.,) Embedded system Design cycle, Types of Real Time systems, Real Time Applications and features, Issues in real time computing, aspects of real-time systems (timeliness, responsiveness, concurrency, predictability, correctness, robustness, fault tolerance and safety, resource limitations, RTOS necessity), real-time requirement specifications, modelling/verifying design tools (UML, state charts, etc.,).

UNIT-II

Embedded Hardware for Real Time System

Selection criteria for Real time system - Hardware and Software perspective, need for partitioning, criteria for partitioning (performance, criticality, development ease, robustness, fault tolerance and safety, resource limitations, etc.,), System Considerations, Basic development environment-host vs target concept, CPU features, Architecture, I/O Ports, on-chip peripherals, Memory, Real time implementation considerations, bus architecture, Introduction to Interrupts, Interrupt vector table, interrupt programming, Pipeline and Parallelism concepts.

Case study of C2000 architecture, Real time applications by interfacing C2000 with sensors and actuators (example: Motor Control, Digital Power, and Power Line Communication)

UNIT III

Embedded Hardware – On chip Peripherals and Communication protocols –

Role of peripherals for Real time systems, On-Chip peripherals & hardware accelerators, Peripherals [Direct Memory Access, Timers, Analog to Digital Conversion (ADC), DAC, Comparator, Pulse Width Modulation (PWM)], Need of real time

Communication, Communication Requirements, Timeliness, Dependability, Design Issues, Overview of Real time communication, Real time Communication Peripherals – I2C, SPI & UART

Case study - Illustration of configuring and interfacing the peripherals (timers, ADC, DAC, and PWM) and Real time communication protocols (I2C, SPI & UART) using C2000 platforms

UNIT IV

Embedded Software and RTOS

Software Architecture of real time System, Introduction to RTOS, role of RTOS, foreground Back ground system, pros and cons, Real time kernel, qualities of good RTOS, Functionalities of RTOS – Task Management, I/O management, Memory management, Inter Task Communication, Tasks, Task states, Task control block, attributes of TCB, Context switching, Interrupts handling, Multiprocessing and multitasking

Case study examples for demonstrating task management functionalities (ex: Task switching, task deleting, task suspending and resuming, managing priority and etc.,) using TI RTOS on C2000 platforms.

UNIT-V

Scheduling, Synchronization and Inter task communication in Real Time Systems
Basic Concepts for Real-Time Task Scheduling, Scheduling criteria, Overview of
Scheduling policies, Task Synchronization – Need of synchronization, shared data
problems and its ways of handling, Role of Semaphore, types of semaphores,
semaphore functions, Inter task communication – Need of communication, Message
Mailbox and Message Queues, RTOS problems - Priority inversion phenomenon,
Deadlock phenomenon and steps to handle them.

Case study examples to demonstrate concepts of task synchronization (Semaphore) and Inter task communication (Mailbox and Message queues), using TI RTOS for C2000 platforms

TEXT BOOKS

- Real-Time Systems by Jane W. S. Liu Prentice Hall; 1 edition ISBN: 978-0130996510
- 2. Krishna .C.M "Real Time Systems" Mc-Graw Hill Publication.
- Hamid A. Toliyat and Steven G. Campbell, "DSP based Electromechanical Motion Control" CRC Press, 2003, ISBN 9780849319181.
- Jean J Labrosse, "Embedded System Design blocks", CMP books, Second Edition, ISBN 0-87930-604-1

 John H Davies, "MSP430 Microcontroller Basics" Newnes, 2nd edition, ISBN-13: 978-0750682763

REFERENCES

- TMS320C28x CPU and Instruction Set Reference Guide, TI Literature Number: SPRU 430E, Revised January 2009
- TMS320x28xx, 28xxx DSP Peripheral Reference Guide, TI Literature Number: SPRU566J, Revised April 2011
- 3. C2000 Teaching CD ROM from Texas Instruments
- 4. Intro to the TI-RTOS Kernel Workshop Lab Manual, by Texas Instruments, Rev 2.3 December 2014
- 5. http://processors.wiki.ti.com/index.php/C2000_32-bit_Real-Time_MCU_Training

B. Tech IV-ISem. (ECE)

L T P C

15A04711 MICROWAVE & OPTICAL COMMUNICATIONS LABORATORY

Course Outcomes:

- Capable of Applying microwave Concepts/ Microwave components and test them.
- Able to design and analyse an optical fiber communications link

Microwave Lab (PART – A) --- Any Seven (7) Experiments

- 1. Reflex Klystron Characteristics.
- Gunn Diode Characteristics.
- 3. Attenuation Measurement.
- 4. Directional Coupler Characteristics.
- VSWR Measurement.
- 6. Impedance Measurement.
- 7. Frequency and Wavelength measurements using slotted section.
- 8. Impedance Matching and Tuning
- 9. Scattering parameters of Magic Tee.
- 10. Radiation Pattern Measurement of horn Antennas (at least two antennas).

Optical Fiber Lab (PART - B) --- Any five (5) Experiments

- Characterization of LED.
- Characterization of Laser Diode.
- 3. Intensity modulation of Laser output through an optical fiber.
- Measurement of Data rate for Digital Optical link.
- 5. Measurement of Numerical Aperture of the given fiber.
- Measurement of losses for Analog Optical link.

Equipment required for Laboratories:

- 1. Regulated Klystron Power Supply 6 nos.
- VSWR Meter 6 nos.
- 3. Milli/Micro Ammeters 10 nos.
- 4. Multi meters 10 nos.
- CROs 8 nos.
- 6. GUNN Power Supply, Pin Moderator4 nos.
- 7. Relevant Microwave components
- 8. Fiber Optic Analog Trainer based LED3 nos.
- 9. Fiber Optic Analog Trainer based laser2nos.
- 10. Fiber Optic Digital Trainer 1 no.
- 11. Fiber cables (Plastic, Glass)

Page 159

B. Tech IV-ISem. (ECE)

L T P (

15A04712 VLSI & EMBEDDED SYSTEMS LABORATORY

Note: The students are required to perform any **Six** Experiments from each Part of the following.

Part-A: VLSI Lab Course Objective:

- To design and draw the internal structure of the various digital integrated circuits
- To develop VHDL/Verilog HDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.
- To verify the logical operations of the digital ICs (Hardware) in the laboratory.

Course Outcome:

After completion of the course the students will be able to

- Design and draw the internal structure of the various digital integrated circuits
- Develop VHDL/Verilog HDL source code, perform simulation using relevant simulator andanalyze the obtained simulation results using necessary synthesizer.
- Verify the logical operations of the digital IC"s (Hardware) in the laboratory

Note: For the following list of experiments students are required to do the following.

- Target Device Specifications
- Simulation
- Synthesize the design
- Generate RTL Schematic.
- Generate Technology Map.
- Generate Synthesis report.
- Design Summary.

List of Experiments:

Note: Use VHDL/ Verilog HDL

- 1. Realization of Logic Gates.
- 2. 3- to 8Decoder- 74138.
- 3. 8 x 1 Multiplexer-74151 and 2 x 4 De-multiplexer-74155.
- 4. 4-Bit Comparator-7485.

- 5. D Flip-Flop-7474.
- 6. Decade counter-7490.
- 7. Shift registers-7495.
- 8. ALU Design.

Part B: Embedded C Experiments using TM4C processor:

 Learn and understand how to configure EK-TM4C123GXL Launchpad digital I/O pins. Write a C program for configuration of GPIO ports for Input and output operation (blinking LEDs, push buttons interface).

Exercises:

- Modify the code to make the red LED of EK-TM4C123GXL Launchpad blink.
- b) Modify the code to make the green and red LEDs blink:
 - I. Together
 - II. Alternately
- c) Alter the code to turn the LED ON when the button is pressed and OFF when it is released.
- d) Modify the delay with which the LED blinks.
- e) Alter the code to make the green LED stay ON for around 1 second every time the button is pressed.
- f) Alter the code to turn the red LED ON when the button is pressed and the green LED ON when the button is released.
- 2. Learn and understand Timer based interrupt programming. Write a C program for EK-TM4C123GXL Launchpad and associated Timer ISR to toggle onboard LED using interrupt programming technique.

Exercises:

- a) Modify the code for a different timer toggling frequency.
- b) Write the code to turn on interrupt globally.
- Configure hibernation module of the TM4C123GH6PM microcontroller to place the device in low power state and then to wake up the device on RTC (Real-Time Clock) interrupt.

Exercises:

- Write a program to configure hibernation mode and wake up the EK-TM4C123GXL Launchpad when onboard switch SW2 is pressed.
- Configure in-build ADC of TM4C123GH6PM microcontroller and interface potentiometer with EK-TM4C123GXL Launchpad to observe corresponding 12- bit digital value.

Exercises:

 Tabulate ten different position of the Potentiometer and note down the Digital value and calculate the equivalent analog value.

- b) Use the ADC to obtain the analog value from the internal temperature sensor.
- c) Configure Dual ADC modules to read from 2 analog input (could be from 2 potentiometers)
- d) What are the trigger control mechanism for this ADC?
- e) What does the resolution refer on ADC Specification?
- f) The current sampling method is single ended sampling. This ADC could also be configured to do differential sampling. What is the difference between the two methods of sampling?
- Learn and understand the generation of Pulse Width Module (PWM) signal by configuring and programming the in-build PWM module of TM4C123GH6PM microcontroller.

Exercises:

- a) Change the software to output a set Duty Cycle, which can be user programmed.
- Change the frequency of the PWM Output from 6.25 KHz to 10 KHz and do the tabulation again.
- Generate Complementary signals, route it to two pins, and observe the waveforms.
- d) What is dead band generation mean and where is it applied?
- e) Is it possible to construct a DAC from a PWM? Identify the additional components and connection diagram for the same.
- f) Sketch the gate control sequence of 3 phase Inverter Bridge and how many PWM generator blocks are required? Can we generate this from TIVA Launchpad?
- Configure the PWM and ADC modules of TM4C123GH6PM microcontroller to control the speed of a DC motor with a PWM signal based on the potentiometer output.

Exercises:

- a) With the same ADC input configure 2 PWM generator modules with 2 different frequencies.
- b) Read the Internal temperature sensor and control a DC Motor that could be deployed in fan Controller by observing the unit or ambient temperature.
- c) What is the resolution of the PWM in this experiment?
- d) What would be the maximum frequency that can be generated from the PWM generator?
- e) Briefly explain an integrated application of ADC and PWM based control.
- Learn and understand to connect EK-TM4C123GXL Launchpad to PC terminal and send an echo of the data input back to the PC using UART.

Exercises:

- a) Change the baud rate to 19200 and repeat the experiment.
- b) What is the maximum baud rate that can be set in the UART peripheral of TIVA?
- c) Modify the software to display "Switch pressed" by pressing a user input switch on the Launchpad.
- 8. Learn and understand interfacing of accelerometer in Sensor Hub Booster pack with EK-TM4C123GXL Launchpad using I2C.

Exercises:

- a) Make a LED ON when the acceleration value in the x axis crosses a certain limit, say +5.
- b) What is the precaution taken in this experiment in order to avoid the overflow of UART buffer?
- Change the value of PRINT_SKIP_COUNT to 100 and see the difference in the output.
- d) Change MPU9150_ACCEL_CONFIG_AFS_SEL_2G to MPU9150_ACCEL_CONFIG_AFS_SEL_4G on line 461 of the same source file and Observe the difference.
- 9. USB bulk transfer mode:

Learn and understand to transfer data using bulk transfer mode with the USB2.0 peripheral of the TM4C123GH6PM device.

Exercises:

- a) What are the different modes offered by USB 2.0?
- b) What are the typical devices that use Bulk transfer mode?
- 10. Learn and understand to find the angle and hypotenuse of a right angle triangle using IQmath library of TivaWare.

Exercises:

- a) Change the base and adjacent values in the program to other values, build the program and observe the values in the watch window.
- b) Open IQmathLib.h and browse through the available functions. What function is to be used if the IQ number used in the program is to be converted to a string?
- Learn and understand interfacing of CC3100 WiFi module with EK-TM4C123GXL Launchpad and configuration of static IP address for CC3100 booster pack.

Exercises:

- a) Try pinging the same IP address before connecting to the Access Point (AP) and note down the observation.
- b) What is the difference between static IP address and dynamic IP address?
- 12. Configure CC3100 Booster Pack connected to EK-TM4C123GXL Launchpad as a Wireless Local Area Network (WLAN) Station to send Email over SMTP.

Exercises:

- a) In the terminal output window, we have received a debug message "Pinging...!". Search in the code and change the message to "Pinging the website". Repeat the experiment to observe this change in the Serial Window.
- b) In line no:62 of main. C replace www.ti.com with any non-existing web address and repeat the experiment and observe what happens
- c) In line no: 62 of main. C replace again with www.ti.com and repeat the experiment.
- d) Identify the code that helps in establishing connection over SMTP.
 Modify the code to trigger E-mail application based upon external analog input.
- e) How to configure the AP WLAN parameters and network parameters (IP addresses and DHCP parameters) using CC3100 API.
- Configure CC3100 Booster Pack connected to EK-TM4C123GXL Launchpad as a HTTP server.

Exercises:

- a) Where are the webpages stored in the CC3100?
- b) What happens if we try to access a webpage, which is not there inside the CC3100?
- c) List 3 applications with a 3 to 4-line brief description that you think can be performed with this experimental setup.

B. Tech IV-IISem. (ECE)

LTPC

15A04801 ADVANCED DIGITAL SIGNAL PROCESSING-MULTIRATE & WAVELET (MOOCS-II)

Course Objectives:

- To study about the digital signal processing algorithms and multi rate signal processing
- To study about the power spectral estimation by using Barlett, Welch &Blackmann& Tukey methods.
- The study about the effects of finite word length in fixed-point dsp systems.

Course Outcomes:

After completion of the course students will be able to

- Get complete knowledge regarding various algorithms associated with Digital signal processing and multi rate signal processing.
- Verify the power spectral estimation by using Barlett, Welch &Blackmann& Tukey methods.
- Understand the effects of finite word length in fixed-point DSP systems by using ADC and FFT algorithms

UNIT – I

A Beginning with some practical situations, which call for multi-resolution/ multi-scale analysis - and how time-frequency analysis and wavelets arise from them. Examples: Image Compression, Wideband Correlation Processing, Magnetic Resonance Imaging, Digital CommunicationPiecewise constant approximation - the Haar wavelet, Building up the concept of dyadic Multi-resolution Analysis (MRA), Relating dyadic MRA to filter banks.

UNIT - II

A review of discrete signal processing, Elements of multi-rate systems and two-band filter bank design for dyadic wavelets. Families of wavelets: Orthogonal and bi-orthogonal wavelets, Daubechies' family of wavelets in detail, Vanishing moments and

regularity, Conjugate Quadrature Filter Banks (CQF) and their design, Dyadic MRA more formally, Data compression - fingerprint compression standards, JPEG-2000 standards.

UNIT - III

The Uncertainty Principle: and its implications: the fundamental issue in this subject the problem and the challenge that Nature imposes. Theimportances of the Gaussian function: the Gabor Transform and its generalization; time, frequency and scale - their interplay, The Continuous Wavelet Transform (CWT), Condition of admissibility and its implications. Application of the CWT in wideband correlation processing.

UNIT - IV

Journey from the CWT to the DWT: Discretization in steps, Discretization of scale - generalized filter bank, Discretization of translation - generalized output sampling, Discretization of time/ space (independent variable) - sampled inputs, Going from piecewise linear to piecewise polynomial, The class of spline wavelets - a case for infinite impulse response (IIR) filter banks, Variants of the wavelet transform and its implementation structures, the wave packet transform, Computational efficiency in realizing filter banks - Polyphase components, The lattice structure, The lifting scheme.

UNIT - V

An exploration of applications (this will be a joint effort between the instructor and the class). Examples: Transient analysis; singularity detection; Biomedical signal processing applications; Geophysical signal analysis applications; Efficient signal design and realization: wavelet based modulation and demodulation; Applications in mathematical approximation; Applications to the solution of some differential equations; Applications in computer graphics and computer vision; Relation to the ideas of fractals and fractal phenomena.

Textbooks:

- 1. Howard L. Resnikoff, Raymond O.Wells, "Wavelet Analysis: The scalable Structure Information," Springer, 1998 available in India edition.
- K. P. Soman, K. I. Ramachandran, "Insight Into Wavelets From Theory to Practice", Prentice Hall of India, Eastern Economy Edition, Prentice Hall of India Private Limited, M-97, Connaught Circus, New Delhi - 110 001, Copyright 2004, ISBN Number 81-203-2650-4.
- 3. Michael W. Frazier, "An Introduction to Wavelets through Linear Algebra", Springer, ISBN 3-540-780-75-0, c 1999.

4. P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson Education, Low Price Edition, ISBN 81 – 7758 – 942 – 3.

B. Tech IV-IISem. (ECE)

LTPC

15A04802 LOW POWER VLSI CIRCUITS AND SYSTEMS (MOOCS-II)

Course Outcomes:

After completion of this subject, students will be able to

- Under stand the concepts of velocity saturation, Impact Ionization and Hot Electron Effect
- Implement Low power design approaches for system level and circuit level measures.
- Design low power adders, multipliers and memories for efficient design of systems.

UNIT I

<u>Introduction</u>, Historical background, why low power, sources of power dissipations, low-power design methodologies.

MOS Transistors: introduction, the structure of MOS Transistor, the Fluid model, Modes of operation of MOS Transistor, Electrical characteristics of MOS Transistors, MOS Transistors as a switch.

UNIT II

MOS Inverters: introduction, inverter and its characteristics, configurations, inverter ratio in different situations, switching characteristics, delay parameters, driving parameters, driving large capacitive loads.

MOS Combinational Circuits: introduction, Pass-Transistor logic, Gate logic, MOS Dynamic Circuits.

UNIT III

Sources of Power Dissipation: introduction, short-circuit power dissipation, switching power dissipation, glitching power dissipation, leakage power dissipation.

Supply voltage scaling for low power: introduction, device features size scaling, architecture-level approaches, voltage scaling, multilevel voltage scaling, challenges, dynamic voltage and frequency scaling, adaptive voltage scaling.

UNIT IV

Minimizing Switched Capacitance:introduction, system-level approaches, transmeta's Crusoe processor, bus encoding, clock gating, gated-clock FSMs, FSM state encoding, FSM Partitioning, operand isolation, precomputation, logic styles for low power.

UNIT V

<u>Minimizing Leakage Power:</u> introduction, fabrication of multiple threshold voltages, approaches for minimizing leakage power, Adiabatic Logic Circuits, Battery-Driven System, CAD Tools for Low Power VLSI Circuits.

TEXT BOOKS

- 1. Ajit. Pal, Low power VLSI Circuits and systems, springer
- Sung Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits, Tata Mcgrag Hill.
- 3. Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Edition, Addison Wesley (Indian reprint).
- 4. A. Bellamour, and M. I. Elmasri, Low Power VLSI CMOS Circuit Design, Kluwer Academic Press, 1995.
- 5. Anantha P. Chandrakasan and Robert W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, 1995.

REFERENCES

 Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Design, Wiley-Interscience, 2000.

B. Tech IV-IISem. (ECE)

LTPC

15A04803 PATTERN RECOGNITION & APPLICATIONS (MOOCS-III)

UNIT – I

Introduction: Feature extraction and Pattern Representation Concept of Supervised and Unsupervised classification Introduction to Application Areas.

UNIT - II

Statistical Pattern Recognition

Bayes Decision Theory, Minimum Error and Minimum Risk Classifiers, Discriminant Function and Decision Boundary Normal Density, Discriminant Function for Discrete Features. Parameter estimation

UNIT - III

Dimensionality Problem

Dimension and accuracy, Computational Complexity, Dimensionality Reduction, Fisher Linear Discriminant, Multiple Discriminant Analysis

Nonparametric Pattern Classification

Density Estimation, Nearest Neighbour Rule, Fuzzy Classification

UNIT - IV

Linear Discriminant Functions Separability, Two Category and Multi Category Classification, Linear Discriminators, Perceptron Criterion, Relaxation Procedure, Minimum Square Error Criterion, Widrow-Hoff Procedure, Ho-Kashyap Procedure, Kesler's Construction.

Neural Network Classifier Single and Multilayer Perceptron, Back Propagation Learning, Hopfield Network, Fuzzy Neural Network

UNIT - V

Time Varying Pattern Recognition

First Order Hidden Markov Model, Evaluation, Decoding, Learning

Unsupervised Classification

Clustering, Hierarchical Clustering, Graph Based Method, Sum of Squared Error Techniquelterative Optimization

Textbooks:

- Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", JohnWiley& Sons, 2001.
- Earl Gose, Richard Johsonbaugh and Steve Jost, "Pattern Recognition and Image Analysis", Prentice Hall, 1999.

B. Tech IV-IISem. (ECE)

L T P C

15A04804 RF INTEGRATED CIRCUITS (MOOCS-III)

UNIT – I

Introduction RF systems – basic architectures, Transmission media and reflections, Maximum power transfer , Passive RLC Networks, Parallel RLC tank, Q, Series RLC networks, matching, Pi match, T match, Passive IC Components Interconnects and skin effect, Resistors, capacitors Inductors

UNIT - II

Review of MOS Device Physics - MOS device review, Distributed Systems, Transmission lines, reflection coefficient, the wave equation, examples, Lossy transmission lines, Smith charts – plottingGamma, High Frequency Amplifier Design, Bandwidth estimation using open-circuit time constants, Bandwidth estimation, using short-circuit time constants, Rise time, delay and bandwidth, Zeros to enhance bandwidth, Shunt-series amplifiers, tuned amplifiers, Cascaded amplifiers

UNIT - III

Noise - Thermal noise, flicker noise review, Noise figure, LNA Design, Intrinsic MOS noise parameters, Power match versus, noise match, large signal performance, design examples & Multiplier based mixers. Mixer Design, Subsampling mixers.

UNIT - IV

RF Power Amplifiers, Class A, AB, B, C amplifiers, Class D, E, F amplifiers, RF Power amplifier design examples, Voltage controlled oscillators, Resonators, Negative resistance oscillators, Phase locked loops, Linearized PLL models, Phase detectors, charge pumps, Loop filters, and PLL design examples

UNIT - V

Frequency synthesis and oscillators, Frequency division, integer-N synthesis, Fractional frequency, synthesis, Phase noise, General considerations, and Circuit examples, Radio architectures, GSM radio architectures, CDMA, UMTS radio architectures

Textbooks:

- 1. The design of CMOS Radio frequency integrated circuits by Thomas H. Lee Cambridge university press, 2004.
- 2. RF Micro Electronics by BehzadRazavi, Prentice Hall, 1997.